Cargando…

Role of TGF-β1/Smad3 Signaling Pathway in Secretion of Type I and III Collagen by Vascular Smooth Muscle Cells of Rats Undergoing Balloon Injury

Antisense Smad3 adenoviral vectors were used to transfect vascular smooth muscle cells (VSMCs) from rats with balloon injury or infused into the rat balloon-catheter injured carotid arteries, and the role of TGF-β1/Smad3 signaling pathway in the secretion of type I and III collagen by VSMCs followin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Ping, Wang, Songhao, Cai, Wenwei, Sheng, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471068/
https://www.ncbi.nlm.nih.gov/pubmed/23091366
http://dx.doi.org/10.1155/2012/965953
Descripción
Sumario:Antisense Smad3 adenoviral vectors were used to transfect vascular smooth muscle cells (VSMCs) from rats with balloon injury or infused into the rat balloon-catheter injured carotid arteries, and the role of TGF-β1/Smad3 signaling pathway in the secretion of type I and III collagen by VSMCs following balloon injury was investigated. Antisense Smad3 adenoviral vectors were used to transfect these VSMCs (antisense Smad3 group). A total 90 rats were randomly assigned into blank control group, experiment group, negative control group. In the in vitro study, the expression of type I and III collagen was markedly reduced in the antisense Smad3 group when compared with the control groups (P < 0.05). In the in vivo study, the expression of type I and III collagen was significantly lower than that in the negative control group at 3 days, 1 week and 2 weeks after injury (P < 0.05). At 2 weeks and 3 months after injury, the lumen area in the antisense Smad3 group was markedly increased but the intimal area dramatically reduced when compared with the negative control (P < 0.05). We conclude that transfection of VSMCs with antisense Smad3 can reduce the secretion of type I and III collagen which then inhibit intimal hyperplasia.