Cargando…
Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles
Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that g...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471705/ https://www.ncbi.nlm.nih.gov/pubmed/22908222 http://dx.doi.org/10.1074/jbc.M112.398883 |
_version_ | 1782246462846926848 |
---|---|
author | Kwon, Sung E. Chapman, Edwin R. |
author_facet | Kwon, Sung E. Chapman, Edwin R. |
author_sort | Kwon, Sung E. |
collection | PubMed |
description | Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins. |
format | Online Article Text |
id | pubmed-3471705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-34717052012-10-16 Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles Kwon, Sung E. Chapman, Edwin R. J Biol Chem Neurobiology Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins. American Society for Biochemistry and Molecular Biology 2012-10-12 2012-08-20 /pmc/articles/PMC3471705/ /pubmed/22908222 http://dx.doi.org/10.1074/jbc.M112.398883 Text en © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Neurobiology Kwon, Sung E. Chapman, Edwin R. Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title | Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title_full | Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title_fullStr | Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title_full_unstemmed | Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title_short | Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles |
title_sort | glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of sv2 and synaptophysin to recycling synaptic vesicles |
topic | Neurobiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471705/ https://www.ncbi.nlm.nih.gov/pubmed/22908222 http://dx.doi.org/10.1074/jbc.M112.398883 |
work_keys_str_mv | AT kwonsunge glycosylationisdispensableforsortingofsynaptotagmin1butiscriticalfortargetingofsv2andsynaptophysintorecyclingsynapticvesicles AT chapmanedwinr glycosylationisdispensableforsortingofsynaptotagmin1butiscriticalfortargetingofsv2andsynaptophysintorecyclingsynapticvesicles |