Cargando…
The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization
CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO(2)] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471820/ https://www.ncbi.nlm.nih.gov/pubmed/23077613 http://dx.doi.org/10.1371/journal.pone.0047424 |
_version_ | 1782246472167718912 |
---|---|
author | Maisel, Tobias Joseph, Stephanie Mielke, Thorsten Bürger, Jörg Schwarzinger, Stephan Meyer, Ortwin |
author_facet | Maisel, Tobias Joseph, Stephanie Mielke, Thorsten Bürger, Jörg Schwarzinger, Stephan Meyer, Ortwin |
author_sort | Maisel, Tobias |
collection | PubMed |
description | CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO(2)] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E. coli K38 pGP1-2/pETMW2 appeared in inclusion bodies from where it was solubilized by urea and refolded by stepwise dilution. Circular dichroism spectroscopy revealed the presence of secondary structural elements in refolded CoxD. CoxD is a P-loop ATPase of the AAA-protein family. Refolded CoxD catalyzed the hydrolysis of MgATP yielding MgADP and inorganic phosphate at a 1∶1∶1 molar ratio. The reaction was inhibited by the slow hydrolysable MgATP-γ-S. GTPase activity of CoxD did not exceed 2% of the ATPase activity. Employing different methods (non linear regression, Hanes and Woolf, Lineweaver-Burk), preparations of CoxD revealed a mean K(M) value of 0.69±0.14 mM ATP and an apparent V(max) value of 19.3±2.3 nmol ATP hydrolyzed min(−1) mg(−1). Sucrose density gradient centrifugation and gel filtration showed that refolded CoxD can exist in various multimeric states (2-mer, 4-mer or 6-mer), preferentially as hexamer or dimer. Within weeks the hexamer dissociates into the dimer, a process which can be reversed by MgATP or MgATP-γ-S within hours. Only the hexamers and the dimers exhibited MgATPase activity. Transmission electron microscopy of negatively stained CoxD preparations revealed distinct particles within a size range of 10–16 nm, which further corroborates the oligomeric organization. The 3D structure of CoxD was modeled with the 3D structure of BchI from Rhodobacter capsulatus as template. It has the key elements of an AAA+ domain in the same arrangement and at same positions as in BchI and displays the characteristic inserts of the PS-II-insert clade. Possible functions of CoxD in [CuSMoO(2)] cluster assembly are discussed. |
format | Online Article Text |
id | pubmed-3471820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34718202012-10-17 The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization Maisel, Tobias Joseph, Stephanie Mielke, Thorsten Bürger, Jörg Schwarzinger, Stephan Meyer, Ortwin PLoS One Research Article CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the [CuSMoO(2)] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E. coli K38 pGP1-2/pETMW2 appeared in inclusion bodies from where it was solubilized by urea and refolded by stepwise dilution. Circular dichroism spectroscopy revealed the presence of secondary structural elements in refolded CoxD. CoxD is a P-loop ATPase of the AAA-protein family. Refolded CoxD catalyzed the hydrolysis of MgATP yielding MgADP and inorganic phosphate at a 1∶1∶1 molar ratio. The reaction was inhibited by the slow hydrolysable MgATP-γ-S. GTPase activity of CoxD did not exceed 2% of the ATPase activity. Employing different methods (non linear regression, Hanes and Woolf, Lineweaver-Burk), preparations of CoxD revealed a mean K(M) value of 0.69±0.14 mM ATP and an apparent V(max) value of 19.3±2.3 nmol ATP hydrolyzed min(−1) mg(−1). Sucrose density gradient centrifugation and gel filtration showed that refolded CoxD can exist in various multimeric states (2-mer, 4-mer or 6-mer), preferentially as hexamer or dimer. Within weeks the hexamer dissociates into the dimer, a process which can be reversed by MgATP or MgATP-γ-S within hours. Only the hexamers and the dimers exhibited MgATPase activity. Transmission electron microscopy of negatively stained CoxD preparations revealed distinct particles within a size range of 10–16 nm, which further corroborates the oligomeric organization. The 3D structure of CoxD was modeled with the 3D structure of BchI from Rhodobacter capsulatus as template. It has the key elements of an AAA+ domain in the same arrangement and at same positions as in BchI and displays the characteristic inserts of the PS-II-insert clade. Possible functions of CoxD in [CuSMoO(2)] cluster assembly are discussed. Public Library of Science 2012-10-15 /pmc/articles/PMC3471820/ /pubmed/23077613 http://dx.doi.org/10.1371/journal.pone.0047424 Text en © 2012 Maisel et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Maisel, Tobias Joseph, Stephanie Mielke, Thorsten Bürger, Jörg Schwarzinger, Stephan Meyer, Ortwin The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title | The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title_full | The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title_fullStr | The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title_full_unstemmed | The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title_short | The CoxD Protein, a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization |
title_sort | coxd protein, a novel aaa+ atpase involved in metal cluster assembly: hydrolysis of nucleotide-triphosphates and oligomerization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471820/ https://www.ncbi.nlm.nih.gov/pubmed/23077613 http://dx.doi.org/10.1371/journal.pone.0047424 |
work_keys_str_mv | AT maiseltobias thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT josephstephanie thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT mielkethorsten thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT burgerjorg thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT schwarzingerstephan thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT meyerortwin thecoxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT maiseltobias coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT josephstephanie coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT mielkethorsten coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT burgerjorg coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT schwarzingerstephan coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization AT meyerortwin coxdproteinanovelaaaatpaseinvolvedinmetalclusterassemblyhydrolysisofnucleotidetriphosphatesandoligomerization |