Cargando…

Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands

BACKGROUND: Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a...

Descripción completa

Detalles Bibliográficos
Autores principales: Gazos-Lopes, Felipe, Mesquita, Rafael Dias, Silva-Cardoso, Lívia, Senna, Raquel, Silveira, Alan Barbosa, Jablonka, Willy, Cudischevitch, Cecília Oliveira, Carneiro, Alan Brito, Machado, Ednildo Alcantara, Lima, Luize G., Monteiro, Robson Queiroz, Nussenzveig, Roberto Henrique, Folly, Evelize, Romeiro, Alexandre, Vanbeselaere, Jorick, Mendonça-Previato, Lucia, Previato, José Osvaldo, Valenzuela, Jesus G., Ribeiro, José Marcos Chaves, Atella, Georgia Correa, Silva-Neto, Mário Alberto Cardoso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471836/
https://www.ncbi.nlm.nih.gov/pubmed/23077586
http://dx.doi.org/10.1371/journal.pone.0047285
_version_ 1782246476483657728
author Gazos-Lopes, Felipe
Mesquita, Rafael Dias
Silva-Cardoso, Lívia
Senna, Raquel
Silveira, Alan Barbosa
Jablonka, Willy
Cudischevitch, Cecília Oliveira
Carneiro, Alan Brito
Machado, Ednildo Alcantara
Lima, Luize G.
Monteiro, Robson Queiroz
Nussenzveig, Roberto Henrique
Folly, Evelize
Romeiro, Alexandre
Vanbeselaere, Jorick
Mendonça-Previato, Lucia
Previato, José Osvaldo
Valenzuela, Jesus G.
Ribeiro, José Marcos Chaves
Atella, Georgia Correa
Silva-Neto, Mário Alberto Cardoso
author_facet Gazos-Lopes, Felipe
Mesquita, Rafael Dias
Silva-Cardoso, Lívia
Senna, Raquel
Silveira, Alan Barbosa
Jablonka, Willy
Cudischevitch, Cecília Oliveira
Carneiro, Alan Brito
Machado, Ednildo Alcantara
Lima, Luize G.
Monteiro, Robson Queiroz
Nussenzveig, Roberto Henrique
Folly, Evelize
Romeiro, Alexandre
Vanbeselaere, Jorick
Mendonça-Previato, Lucia
Previato, José Osvaldo
Valenzuela, Jesus G.
Ribeiro, José Marcos Chaves
Atella, Georgia Correa
Silva-Neto, Mário Alberto Cardoso
author_sort Gazos-Lopes, Felipe
collection PubMed
description BACKGROUND: Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.
format Online
Article
Text
id pubmed-3471836
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34718362012-10-17 Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands Gazos-Lopes, Felipe Mesquita, Rafael Dias Silva-Cardoso, Lívia Senna, Raquel Silveira, Alan Barbosa Jablonka, Willy Cudischevitch, Cecília Oliveira Carneiro, Alan Brito Machado, Ednildo Alcantara Lima, Luize G. Monteiro, Robson Queiroz Nussenzveig, Roberto Henrique Folly, Evelize Romeiro, Alexandre Vanbeselaere, Jorick Mendonça-Previato, Lucia Previato, José Osvaldo Valenzuela, Jesus G. Ribeiro, José Marcos Chaves Atella, Georgia Correa Silva-Neto, Mário Alberto Cardoso PLoS One Research Article BACKGROUND: Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission. Public Library of Science 2012-10-15 /pmc/articles/PMC3471836/ /pubmed/23077586 http://dx.doi.org/10.1371/journal.pone.0047285 Text en © 2012 Gazos-Lopes et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Gazos-Lopes, Felipe
Mesquita, Rafael Dias
Silva-Cardoso, Lívia
Senna, Raquel
Silveira, Alan Barbosa
Jablonka, Willy
Cudischevitch, Cecília Oliveira
Carneiro, Alan Brito
Machado, Ednildo Alcantara
Lima, Luize G.
Monteiro, Robson Queiroz
Nussenzveig, Roberto Henrique
Folly, Evelize
Romeiro, Alexandre
Vanbeselaere, Jorick
Mendonça-Previato, Lucia
Previato, José Osvaldo
Valenzuela, Jesus G.
Ribeiro, José Marcos Chaves
Atella, Georgia Correa
Silva-Neto, Mário Alberto Cardoso
Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title_full Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title_fullStr Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title_full_unstemmed Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title_short Glycoinositolphospholipids from Trypanosomatids Subvert Nitric Oxide Production in Rhodnius prolixus Salivary Glands
title_sort glycoinositolphospholipids from trypanosomatids subvert nitric oxide production in rhodnius prolixus salivary glands
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471836/
https://www.ncbi.nlm.nih.gov/pubmed/23077586
http://dx.doi.org/10.1371/journal.pone.0047285
work_keys_str_mv AT gazoslopesfelipe glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT mesquitarafaeldias glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT silvacardosolivia glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT sennaraquel glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT silveiraalanbarbosa glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT jablonkawilly glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT cudischevitchceciliaoliveira glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT carneiroalanbrito glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT machadoednildoalcantara glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT limaluizeg glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT monteirorobsonqueiroz glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT nussenzveigrobertohenrique glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT follyevelize glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT romeiroalexandre glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT vanbeselaerejorick glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT mendoncapreviatolucia glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT previatojoseosvaldo glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT valenzuelajesusg glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT ribeirojosemarcoschaves glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT atellageorgiacorrea glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands
AT silvanetomarioalbertocardoso glycoinositolphospholipidsfromtrypanosomatidssubvertnitricoxideproductioninrhodniusprolixussalivaryglands