Cargando…
Rod and Cone Function in Patients with KCNV2 Retinopathy
BACKGROUND: To investigate rod and cone function and disease mechanisms in patients with KCNV2 retinopathy. METHODOLOGY/PRINCIPAL FINDINGS: Psychophysical examinations as well as detailed electrophysiological examinations with Ganzfeld and multifocal electroretinogram (ERG) were performed to study r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471896/ https://www.ncbi.nlm.nih.gov/pubmed/23077521 http://dx.doi.org/10.1371/journal.pone.0046762 |
_version_ | 1782246492742877184 |
---|---|
author | Zobor, Ditta Kohl, Susanne Wissinger, Bernd Zrenner, Eberhart Jägle, Herbert |
author_facet | Zobor, Ditta Kohl, Susanne Wissinger, Bernd Zrenner, Eberhart Jägle, Herbert |
author_sort | Zobor, Ditta |
collection | PubMed |
description | BACKGROUND: To investigate rod and cone function and disease mechanisms in patients with KCNV2 retinopathy. METHODOLOGY/PRINCIPAL FINDINGS: Psychophysical examinations as well as detailed electrophysiological examinations with Ganzfeld and multifocal electroretinogram (ERG) were performed to study response dynamics. Additionally, fundus photography, autofluorescence imaging and spectral domain OCTs were carried out for morphological characterization. Molecular genetic analysis revealed compound heterozygosity in five patients and homozygosity for the KCNV2 gene in one patient. The mutations resulted in complete absence of Kv8.2 subunits in three patients (no protein group, NOP), while the other three patients expressed mutant Kv8.2 subunits resulting in altered Kv2.1/Kv8.2 heteromeric or residual Kv2.1 homomeric potassium channel function (altered protein group, ALP). Although more advanced morphological changes were visible in the NOP group, a clear functional difference between the two groups could not be observed. All patients showed characteristic dynamics of the b-wave intensity-response function, however, scotopic b-wave response amplitudes were within normal limits. We also observed severely reduced oscillatory potentials. CONCLUSIONS/SIGNIFICANCE: A specific genotype-phenotype correlation in retinal function could not be demonstrated. KCNV2 mutations cause a unique form of retinal disorder illustrating the importance of K(+)-channels for the resting potential, activation and deactivation of photoreceptors, while phototransduction remains unchanged. The reduced oscillatory potentials further suggest an altered function of the inner retina. Besides the characteristically steep amplitude-versus-intensity relationship, flicker responses at intermediate frequencies (5–15 Hz) are significantly reduced and shifted in phase. |
format | Online Article Text |
id | pubmed-3471896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34718962012-10-17 Rod and Cone Function in Patients with KCNV2 Retinopathy Zobor, Ditta Kohl, Susanne Wissinger, Bernd Zrenner, Eberhart Jägle, Herbert PLoS One Research Article BACKGROUND: To investigate rod and cone function and disease mechanisms in patients with KCNV2 retinopathy. METHODOLOGY/PRINCIPAL FINDINGS: Psychophysical examinations as well as detailed electrophysiological examinations with Ganzfeld and multifocal electroretinogram (ERG) were performed to study response dynamics. Additionally, fundus photography, autofluorescence imaging and spectral domain OCTs were carried out for morphological characterization. Molecular genetic analysis revealed compound heterozygosity in five patients and homozygosity for the KCNV2 gene in one patient. The mutations resulted in complete absence of Kv8.2 subunits in three patients (no protein group, NOP), while the other three patients expressed mutant Kv8.2 subunits resulting in altered Kv2.1/Kv8.2 heteromeric or residual Kv2.1 homomeric potassium channel function (altered protein group, ALP). Although more advanced morphological changes were visible in the NOP group, a clear functional difference between the two groups could not be observed. All patients showed characteristic dynamics of the b-wave intensity-response function, however, scotopic b-wave response amplitudes were within normal limits. We also observed severely reduced oscillatory potentials. CONCLUSIONS/SIGNIFICANCE: A specific genotype-phenotype correlation in retinal function could not be demonstrated. KCNV2 mutations cause a unique form of retinal disorder illustrating the importance of K(+)-channels for the resting potential, activation and deactivation of photoreceptors, while phototransduction remains unchanged. The reduced oscillatory potentials further suggest an altered function of the inner retina. Besides the characteristically steep amplitude-versus-intensity relationship, flicker responses at intermediate frequencies (5–15 Hz) are significantly reduced and shifted in phase. Public Library of Science 2012-10-15 /pmc/articles/PMC3471896/ /pubmed/23077521 http://dx.doi.org/10.1371/journal.pone.0046762 Text en © 2012 Zobor et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zobor, Ditta Kohl, Susanne Wissinger, Bernd Zrenner, Eberhart Jägle, Herbert Rod and Cone Function in Patients with KCNV2 Retinopathy |
title | Rod and Cone Function in Patients with KCNV2 Retinopathy |
title_full | Rod and Cone Function in Patients with KCNV2 Retinopathy |
title_fullStr | Rod and Cone Function in Patients with KCNV2 Retinopathy |
title_full_unstemmed | Rod and Cone Function in Patients with KCNV2 Retinopathy |
title_short | Rod and Cone Function in Patients with KCNV2 Retinopathy |
title_sort | rod and cone function in patients with kcnv2 retinopathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471896/ https://www.ncbi.nlm.nih.gov/pubmed/23077521 http://dx.doi.org/10.1371/journal.pone.0046762 |
work_keys_str_mv | AT zoborditta rodandconefunctioninpatientswithkcnv2retinopathy AT kohlsusanne rodandconefunctioninpatientswithkcnv2retinopathy AT wissingerbernd rodandconefunctioninpatientswithkcnv2retinopathy AT zrennereberhart rodandconefunctioninpatientswithkcnv2retinopathy AT jagleherbert rodandconefunctioninpatientswithkcnv2retinopathy |