Cargando…

Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium

A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway enco...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Stuart, Witkowski, Andrzej, Moghul, Ayesha, Yoshinaga, Yuko, Nefedov, Michael, de Jong, Pieter, Feng, Dejiang, Fong, Loren, Tu, Yiping, Hu, Yan, Young, Stephen G., Pham, Thomas, Cheung, Carling, Katzman, Shana M., Brand, Martin D., Quinlan, Casey L., Fens, Marcel, Kuypers, Frans, Misquitta, Stephanie, Griffey, Stephen M., Tran, Son, Gharib, Afshin, Knudsen, Jens, Hannibal-Bach, Hans Kristian, Wang, Grace, Larkin, Sandra, Thweatt, Jennifer, Pasta, Saloni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471957/
https://www.ncbi.nlm.nih.gov/pubmed/23077570
http://dx.doi.org/10.1371/journal.pone.0047196
_version_ 1782246509607124992
author Smith, Stuart
Witkowski, Andrzej
Moghul, Ayesha
Yoshinaga, Yuko
Nefedov, Michael
de Jong, Pieter
Feng, Dejiang
Fong, Loren
Tu, Yiping
Hu, Yan
Young, Stephen G.
Pham, Thomas
Cheung, Carling
Katzman, Shana M.
Brand, Martin D.
Quinlan, Casey L.
Fens, Marcel
Kuypers, Frans
Misquitta, Stephanie
Griffey, Stephen M.
Tran, Son
Gharib, Afshin
Knudsen, Jens
Hannibal-Bach, Hans Kristian
Wang, Grace
Larkin, Sandra
Thweatt, Jennifer
Pasta, Saloni
author_facet Smith, Stuart
Witkowski, Andrzej
Moghul, Ayesha
Yoshinaga, Yuko
Nefedov, Michael
de Jong, Pieter
Feng, Dejiang
Fong, Loren
Tu, Yiping
Hu, Yan
Young, Stephen G.
Pham, Thomas
Cheung, Carling
Katzman, Shana M.
Brand, Martin D.
Quinlan, Casey L.
Fens, Marcel
Kuypers, Frans
Misquitta, Stephanie
Griffey, Stephen M.
Tran, Son
Gharib, Afshin
Knudsen, Jens
Hannibal-Bach, Hans Kristian
Wang, Grace
Larkin, Sandra
Thweatt, Jennifer
Pasta, Saloni
author_sort Smith, Stuart
collection PubMed
description A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor.
format Online
Article
Text
id pubmed-3471957
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34719572012-10-17 Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium Smith, Stuart Witkowski, Andrzej Moghul, Ayesha Yoshinaga, Yuko Nefedov, Michael de Jong, Pieter Feng, Dejiang Fong, Loren Tu, Yiping Hu, Yan Young, Stephen G. Pham, Thomas Cheung, Carling Katzman, Shana M. Brand, Martin D. Quinlan, Casey L. Fens, Marcel Kuypers, Frans Misquitta, Stephanie Griffey, Stephen M. Tran, Son Gharib, Afshin Knudsen, Jens Hannibal-Bach, Hans Kristian Wang, Grace Larkin, Sandra Thweatt, Jennifer Pasta, Saloni PLoS One Research Article A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor. Public Library of Science 2012-10-15 /pmc/articles/PMC3471957/ /pubmed/23077570 http://dx.doi.org/10.1371/journal.pone.0047196 Text en © 2012 Smith et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Smith, Stuart
Witkowski, Andrzej
Moghul, Ayesha
Yoshinaga, Yuko
Nefedov, Michael
de Jong, Pieter
Feng, Dejiang
Fong, Loren
Tu, Yiping
Hu, Yan
Young, Stephen G.
Pham, Thomas
Cheung, Carling
Katzman, Shana M.
Brand, Martin D.
Quinlan, Casey L.
Fens, Marcel
Kuypers, Frans
Misquitta, Stephanie
Griffey, Stephen M.
Tran, Son
Gharib, Afshin
Knudsen, Jens
Hannibal-Bach, Hans Kristian
Wang, Grace
Larkin, Sandra
Thweatt, Jennifer
Pasta, Saloni
Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title_full Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title_fullStr Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title_full_unstemmed Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title_short Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium
title_sort compromised mitochondrial fatty acid synthesis in transgenic mice results in defective protein lipoylation and energy disequilibrium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471957/
https://www.ncbi.nlm.nih.gov/pubmed/23077570
http://dx.doi.org/10.1371/journal.pone.0047196
work_keys_str_mv AT smithstuart compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT witkowskiandrzej compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT moghulayesha compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT yoshinagayuko compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT nefedovmichael compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT dejongpieter compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT fengdejiang compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT fongloren compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT tuyiping compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT huyan compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT youngstepheng compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT phamthomas compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT cheungcarling compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT katzmanshanam compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT brandmartind compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT quinlancaseyl compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT fensmarcel compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT kuypersfrans compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT misquittastephanie compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT griffeystephenm compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT transon compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT gharibafshin compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT knudsenjens compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT hannibalbachhanskristian compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT wanggrace compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT larkinsandra compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT thweattjennifer compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium
AT pastasaloni compromisedmitochondrialfattyacidsynthesisintransgenicmiceresultsindefectiveproteinlipoylationandenergydisequilibrium