Cargando…

Increased Neuronal α-Synuclein Pathology Associates with Its Accumulation in Oligodendrocytes in Mice Modeling α-Synucleinopathies

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. The histopathological hallmark of MSA is glial cytoplasmic inclusions (GCI) within oligodendrocytes, accompanied by neuronal degeneration. MSA is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kisos, Haya, Pukaß, Katharina, Ben-Hur, Tamir, Richter-Landsberg, Christiane, Sharon, Ronit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471961/
https://www.ncbi.nlm.nih.gov/pubmed/23077527
http://dx.doi.org/10.1371/journal.pone.0046817
Descripción
Sumario:Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. The histopathological hallmark of MSA is glial cytoplasmic inclusions (GCI) within oligodendrocytes, accompanied by neuronal degeneration. MSA is a synucleinopathy, and α-Synuclein (α-Syn) is the major protein constituent of the GCI. It is unclear how the neuronal α-Syn protein accumulates in oligodendrocytes. We tested the hypothesis that oligodendrocytes can take up neuronal-secreted α-Syn as part of the pathogenic mechanisms leading to MSA. We report that increases in the degree of α-Syn soluble oligomers or intracellular α-Syn levels, enhance its secretion from cultured MN9D dopaminergic cells, stably expressing the protein. In accord, we show that primary oligodendrocytes from rat brain and oligodendroglial cell lines take-up neuronal-secreted or exogenously added α-Syn from their conditioning medium. This uptake is concentration-, time-, and clathrin-dependent. Utilizing the demonstrated effect of polyunsaturated fatty acids (PUFA) to enhance α-Syn neuropathology, we show an in vivo effect for brain docosahexaenoic acid (DHA) levels on α-Syn localization to oligodendrocytes in brains of a mouse model for synucleinopathies, expressing human A53T α-Syn cDNA under the PrP promoter. Hence, pathogenic mechanisms leading to elevated levels of α-Syn in neurons underlie neuronal secretion and subsequent uptake of α-Syn by oligodendrocytes in MSA.