Cargando…
Activities of asymmetric dimethylarginine-related enzymes in white adipose tissue are associated with circulating lipid biomarkers
BACKGROUND: Asymmetric N(G),N(G)-dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is regulated by the enzymatic participants of synthetic and metabolic processes, i.e., type I protein N-arginine methyltransferase (PRMT) and dimethylarginine dimethylaminohydrolase (DDAH). Pr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472189/ https://www.ncbi.nlm.nih.gov/pubmed/22546019 http://dx.doi.org/10.1186/1758-5996-4-17 |
Sumario: | BACKGROUND: Asymmetric N(G),N(G)-dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is regulated by the enzymatic participants of synthetic and metabolic processes, i.e., type I protein N-arginine methyltransferase (PRMT) and dimethylarginine dimethylaminohydrolase (DDAH). Previous reports have demonstrated that circulating ADMA levels can vary in patients with type 1 and type 2 diabetes mellitus (T2DM). White adipose tissue expresses the full enzymatic machinery necessary for ADMA production and metabolism; however, modulation of the activities of adipose ADMA-related enzymes in T2DM remains to be determined. METHODS: A rodent model of T2DM using 11- and 20-week old Goto-Kakizaki (GK) rats was used. The expression and catalytic activity of PRMT1 and DDAH1 and 2 in the white adipose tissues (periepididymal, visceral and subcutaneous fats) and femur skeletal muscle tissue were determined by immunoblotting, in vitro methyltransferase and in vitro citrulline assays. RESULTS: Non-obese diabetic GK rats showed low expression and activity of adipose PRMT1 compared to age-matched Wistar controls. Adipose tissues from the periepididymal, visceral and subcutaneous fats of GK rats had high DDAH1 expression and total DDAH activity, whereas the DDAH2 expression was lowered below the control value. This dynamic of ADMA-related enzymes in white adipose tissues was distinct from that of skeletal muscle tissue. GK rats had lower levels of serum non-esterified fatty acids (NEFA) and triglycerides (TG) than the control rats. In all subjects the adipose PRMT1 and DDAH activities were statistically correlated with the levels of serum NEFA and TG. CONCLUSION: Activities of PRMT1 and DDAH in white adipose tissues were altered in diabetic GK rats in an organ-specific manner, which was reflected in the serum levels of NEFA and TG. Changes in adipose ADMA-related enzymes might play a part in the function of white adipose tissue. |
---|