Cargando…

Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma

We report a proteomic analysis of microdissected material from formalin-fixed and paraffin-embedded colorectal cancer, quantifying >7500 proteins between patient matched normal mucosa, primary carcinoma, and nodal metastases. Expression levels of 1808 proteins changed significantly between normal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wiśniewski, Jacek R, Ostasiewicz, Paweł, Duś, Kamila, Zielińska, Dorota F, Gnad, Florian, Mann, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Molecular Biology Organization 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472694/
https://www.ncbi.nlm.nih.gov/pubmed/22968445
http://dx.doi.org/10.1038/msb.2012.44
Descripción
Sumario:We report a proteomic analysis of microdissected material from formalin-fixed and paraffin-embedded colorectal cancer, quantifying >7500 proteins between patient matched normal mucosa, primary carcinoma, and nodal metastases. Expression levels of 1808 proteins changed significantly between normal and cancer tissues, a much larger fraction than that reported in transcript-based studies. Tumor cells exhibit extensive alterations in the cell-surface and nuclear proteomes. Functionally similar changes in the proteome were observed comparing rapidly growing and differentiated CaCo-2 cells. In contrast, there was minimal proteomic remodeling between primary cancer and metastases, suggesting that no drastic proteome changes are necessary for the tumor to propagate in a different tissue context. Additionally, we introduce a new way to determine protein copy numbers per cell without protein standards. Copy numbers estimated in enterocytes and cancer cells are in good agreement with CaCo-2 and HeLa cells and with the literature data. Our proteomic data set furthermore allows mapping quantitative changes of functional protein classes, enabling novel insights into the biology of colon cancer.