Cargando…
A Monotonic Degradation Assessment Index of Rolling Bearings Using Fuzzy Support Vector Data Description and Running Time
Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making i...
Autores principales: | Shen, Zhongjie, He, Zhengjia, Chen, Xuefeng, Sun, Chuang, Liu, Zhiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472819/ https://www.ncbi.nlm.nih.gov/pubmed/23112591 http://dx.doi.org/10.3390/s120810109 |
Ejemplares similares
-
Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
por: Zhu, Xiaolong, et al.
Publicado: (2018) -
Rolling Element Bearing Fault Diagnosis by Combining Adaptive Local Iterative Filtering, Modified Fuzzy Entropy and Support Vector Machine
por: Zhu, Keheng, et al.
Publicado: (2018) -
LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information
por: Liu, Zhiwen, et al.
Publicado: (2013) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023)