Cargando…

A Semantic Autonomous Video Surveillance System for Dense Camera Networks in Smart Cities

This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Calavia, Lorena, Baladrón, Carlos, Aguiar, Javier M., Carro, Belén, Sánchez-Esguevillas, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472835/
https://www.ncbi.nlm.nih.gov/pubmed/23112607
http://dx.doi.org/10.3390/s120810407
Descripción
Sumario:This paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network.