Cargando…

Identification of Differentially-Expressed Genes Associated with Pistil Abortion in Japanese Apricot by Genome-Wide Transcriptional Analysis

The phenomenon of pistil abortion widely occurs in Japanese apricot, and imperfect flowers with pistil abortion seriously decrease the yield in production. Although transcriptome analyses have been extensively studied in the past, a systematic study of differential gene expression has not been perfo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Ting, Gao, Zhihong, Wang, Liangju, Zhang, Zhen, Zhuang, Weibing, Sun, Hailong, Zhong, Wenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472986/
https://www.ncbi.nlm.nih.gov/pubmed/23091648
http://dx.doi.org/10.1371/journal.pone.0047810
Descripción
Sumario:The phenomenon of pistil abortion widely occurs in Japanese apricot, and imperfect flowers with pistil abortion seriously decrease the yield in production. Although transcriptome analyses have been extensively studied in the past, a systematic study of differential gene expression has not been performed in Japanese apricot. To investigate genes related to the pistil development of Japanese apricot, high-throughput sequencing technology (Illumina) was employed to survey gene expression profiles from perfect and imperfect Japanese apricot flower buds. 3,476,249 and 3,580,677 tags were sequenced from two libraries constructed from perfect and imperfect flower buds of Japanese apricot, respectively. There were 689 significant differentially-expressed genes between the two libraries. GO annotation revealed that highly ranked genes were those implicated in small molecule metabolism, cellular component organisation or biogenesis at the cellular level and fatty acid metabolism. According to the results, we assumed that late embryogenesis abundant protein (LEA), Dicer-like 3 (DCL3) Xyloglucan endotransglucosylase/hydrolase 2 (XTH2), Pectin lyase-like superfamily protein (PPME1), Lipid transfer protein 3 (LTP3), Fatty acid biosynthesis 1 (FAB1) and Fatty acid desaturase 5 (FAD5) might have relationships with the pistil abortion in Japanese apricot. The expression patterns of 36 differentially expressed genes were confirmed by real-time (RT)-PCR. This is the first report of the Illumina RNA-seq technique being used for the analysis of differentially-expressed gene profiles related to pistil abortion that both computationally and experimentally provides valuable information for the further functional characterisation of genes associated with pistil development in woody plants.