Cargando…

Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation

BACKGROUND: Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3...

Descripción completa

Detalles Bibliográficos
Autores principales: Desai, Nina, Abdelhafez, Faten, Calabro, Anthony, Falcone, Tommaso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474165/
https://www.ncbi.nlm.nih.gov/pubmed/22513305
http://dx.doi.org/10.1186/1477-7827-10-29
_version_ 1782246771939868672
author Desai, Nina
Abdelhafez, Faten
Calabro, Anthony
Falcone, Tommaso
author_facet Desai, Nina
Abdelhafez, Faten
Calabro, Anthony
Falcone, Tommaso
author_sort Desai, Nina
collection PubMed
description BACKGROUND: Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. METHODS: A novel tyramine-based hyaluronan (HA) hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM). Enzymatically isolated pre-antral follicles from the ovaries of 10–12 day SJL pups were divided amongst control (CT) and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC). Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. RESULTS: HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively). HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively), percent GV breakdown (96–97%), MII formation (47–48%) and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85%) and MII formation (67%) . Vitrified-warmed follicles encapsulated in HA had an oocyte maturation rate to MII of 54% as compared to 57% in non-embedded follicles. CONCLUSIONS: Initial testing of this new and unique HA-based hydrogel was quite promising. The ease of follicle encapsulation in HA, its optical transparency and ability to be molded combined with its support of follicle growth, estradiol secretion and resumption of meiosis make this HA-hydrogel particularly attractive as model for 3-D ovarian follicle culture.
format Online
Article
Text
id pubmed-3474165
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34741652012-10-18 Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation Desai, Nina Abdelhafez, Faten Calabro, Anthony Falcone, Tommaso Reprod Biol Endocrinol Research BACKGROUND: Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. METHODS: A novel tyramine-based hyaluronan (HA) hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM). Enzymatically isolated pre-antral follicles from the ovaries of 10–12 day SJL pups were divided amongst control (CT) and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC). Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. RESULTS: HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively). HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively), percent GV breakdown (96–97%), MII formation (47–48%) and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85%) and MII formation (67%) . Vitrified-warmed follicles encapsulated in HA had an oocyte maturation rate to MII of 54% as compared to 57% in non-embedded follicles. CONCLUSIONS: Initial testing of this new and unique HA-based hydrogel was quite promising. The ease of follicle encapsulation in HA, its optical transparency and ability to be molded combined with its support of follicle growth, estradiol secretion and resumption of meiosis make this HA-hydrogel particularly attractive as model for 3-D ovarian follicle culture. BioMed Central 2012-06-13 /pmc/articles/PMC3474165/ /pubmed/22513305 http://dx.doi.org/10.1186/1477-7827-10-29 Text en Copyright ©2012 Desai et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Desai, Nina
Abdelhafez, Faten
Calabro, Anthony
Falcone, Tommaso
Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title_full Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title_fullStr Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title_full_unstemmed Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title_short Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
title_sort three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474165/
https://www.ncbi.nlm.nih.gov/pubmed/22513305
http://dx.doi.org/10.1186/1477-7827-10-29
work_keys_str_mv AT desainina threedimensionalcultureoffreshandvitrifiedmousepreantralfolliclesinahyaluronanbasedhydrogelapreliminaryinvestigationofanovelbiomaterialforinvitrofolliclematuration
AT abdelhafezfaten threedimensionalcultureoffreshandvitrifiedmousepreantralfolliclesinahyaluronanbasedhydrogelapreliminaryinvestigationofanovelbiomaterialforinvitrofolliclematuration
AT calabroanthony threedimensionalcultureoffreshandvitrifiedmousepreantralfolliclesinahyaluronanbasedhydrogelapreliminaryinvestigationofanovelbiomaterialforinvitrofolliclematuration
AT falconetommaso threedimensionalcultureoffreshandvitrifiedmousepreantralfolliclesinahyaluronanbasedhydrogelapreliminaryinvestigationofanovelbiomaterialforinvitrofolliclematuration