Cargando…
Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
BACKGROUND: In the study of associations between genomic data and complex phenotypes there may be relationships that are not amenable to parametric statistical modeling. Such associations have been investigated mainly using single-marker and Bayesian linear regression models that differ in their dis...
Autores principales: | Gianola, Daniel, Okut, Hayrettin, Weigel, Kent A, Rosa, Guilherme JM |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474182/ https://www.ncbi.nlm.nih.gov/pubmed/21981731 http://dx.doi.org/10.1186/1471-2156-12-87 |
Ejemplares similares
-
Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data
por: Felipe, Vivian PS, et al.
Publicado: (2014) -
Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models
por: Okut, Hayrettin, et al.
Publicado: (2013) -
Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data
por: Morota, Gota, et al.
Publicado: (2013) -
Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens
por: González-Recio, Oscar, et al.
Publicado: (2009) -
Speed breeding for multiple quantitative traits in durum wheat
por: Alahmad, Samir, et al.
Publicado: (2018)