Cargando…

Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

The spontaneous expression of neural markers by mesenchymal stem cells (MSCs) has been considered to be a demonstration of MSCs' predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen t...

Descripción completa

Detalles Bibliográficos
Autores principales: Foudah, Dana, Redondo, Juliana, Caldara, Cristina, Carini, Fabrizio, Tredici, Giovanni, Miloso, Mariarosaria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474592/
https://www.ncbi.nlm.nih.gov/pubmed/23093867
http://dx.doi.org/10.1155/2012/820821
Descripción
Sumario:The spontaneous expression of neural markers by mesenchymal stem cells (MSCs) has been considered to be a demonstration of MSCs' predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs) at different culture passages (from early to late). rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.