Cargando…
An Integrated Approach for Identifying Wrongly Labelled Samples When Performing Classification in Microarray Data
BACKGROUND: Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement...
Autores principales: | Leung, Yuk Yee, Chang, Chun Qi, Hung, Yeung Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474777/ https://www.ncbi.nlm.nih.gov/pubmed/23082127 http://dx.doi.org/10.1371/journal.pone.0046700 |
Ejemplares similares
-
WHEN FUE GOES WRONG!
por: Poswal, Arvind, et al.
Publicado: (2011) -
When the wrong people are immune
por: Brown, Teneille R
Publicado: (2020) -
Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2003) -
Correction: Multiclass classification of microarray data with repeated measurements: application to cancer
por: Yeung, Ka Yee, et al.
Publicado: (2005) -
When the Fight against Fungi Goes Wrong
por: Wang, Xiaowen, et al.
Publicado: (2016)