Cargando…
Multi-voxel pattern analysis in human hippocampal subfields
A complete understanding of the hippocampus depends on elucidating the representations and computations that exist in its anatomically distinct subfields. High-resolution structural and functional MRI scanning is starting to permit insights into hippocampal subfields in humans. In parallel, such sca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474998/ https://www.ncbi.nlm.nih.gov/pubmed/23087638 http://dx.doi.org/10.3389/fnhum.2012.00290 |
_version_ | 1782246876690513920 |
---|---|
author | Bonnici, Heidi M. Chadwick, Martin J. Kumaran, Dharshan Hassabis, Demis Weiskopf, Nikolaus Maguire, Eleanor A. |
author_facet | Bonnici, Heidi M. Chadwick, Martin J. Kumaran, Dharshan Hassabis, Demis Weiskopf, Nikolaus Maguire, Eleanor A. |
author_sort | Bonnici, Heidi M. |
collection | PubMed |
description | A complete understanding of the hippocampus depends on elucidating the representations and computations that exist in its anatomically distinct subfields. High-resolution structural and functional MRI scanning is starting to permit insights into hippocampal subfields in humans. In parallel, such scanning has facilitated the use of multi-voxel pattern analysis (MVPA) to examine information present in the distributed pattern of activity across voxels. The aim of this study was to combine these two relatively new innovations and deploy MVPA in the hippocampal subfields. Delineating subregions of the human hippocampus, a prerequisite for our study, remains a significant challenge, with extant methods often only examining part of the hippocampus, or being unable to differentiate CA3 and dentate gyrus (DG). We therefore devised a new high-resolution anatomical scanning and subfield segmentation protocol that allowed us to overcome these issues, and separately identify CA1, CA3, DG, and subiculum (SUB) across the whole hippocampus using a standard 3T MRI scanner. We then used MVPA to examine fMRI data associated with a decision-making paradigm involving highly similar scenes that had relevance for the computations that occur in hippocampal subfields. Intra- and inter-rater scores for subfield identification using our procedure confirmed its reliability. Moreover, we found that decoding of information within hippocampal subfields was possible using MVPA, with findings that included differential effects for CA3 and DG. We suggest that MVPA in human hippocampal subfields may open up new opportunities to examine how different types of information are represented and processed at this fundamental level. |
format | Online Article Text |
id | pubmed-3474998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-34749982012-10-19 Multi-voxel pattern analysis in human hippocampal subfields Bonnici, Heidi M. Chadwick, Martin J. Kumaran, Dharshan Hassabis, Demis Weiskopf, Nikolaus Maguire, Eleanor A. Front Hum Neurosci Neuroscience A complete understanding of the hippocampus depends on elucidating the representations and computations that exist in its anatomically distinct subfields. High-resolution structural and functional MRI scanning is starting to permit insights into hippocampal subfields in humans. In parallel, such scanning has facilitated the use of multi-voxel pattern analysis (MVPA) to examine information present in the distributed pattern of activity across voxels. The aim of this study was to combine these two relatively new innovations and deploy MVPA in the hippocampal subfields. Delineating subregions of the human hippocampus, a prerequisite for our study, remains a significant challenge, with extant methods often only examining part of the hippocampus, or being unable to differentiate CA3 and dentate gyrus (DG). We therefore devised a new high-resolution anatomical scanning and subfield segmentation protocol that allowed us to overcome these issues, and separately identify CA1, CA3, DG, and subiculum (SUB) across the whole hippocampus using a standard 3T MRI scanner. We then used MVPA to examine fMRI data associated with a decision-making paradigm involving highly similar scenes that had relevance for the computations that occur in hippocampal subfields. Intra- and inter-rater scores for subfield identification using our procedure confirmed its reliability. Moreover, we found that decoding of information within hippocampal subfields was possible using MVPA, with findings that included differential effects for CA3 and DG. We suggest that MVPA in human hippocampal subfields may open up new opportunities to examine how different types of information are represented and processed at this fundamental level. Frontiers Media S.A. 2012-10-18 /pmc/articles/PMC3474998/ /pubmed/23087638 http://dx.doi.org/10.3389/fnhum.2012.00290 Text en Copyright © 2012 Bonnici, Chadwick, Kumaran, Hassabis, Weiskopf and Maguire. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Bonnici, Heidi M. Chadwick, Martin J. Kumaran, Dharshan Hassabis, Demis Weiskopf, Nikolaus Maguire, Eleanor A. Multi-voxel pattern analysis in human hippocampal subfields |
title | Multi-voxel pattern analysis in human hippocampal subfields |
title_full | Multi-voxel pattern analysis in human hippocampal subfields |
title_fullStr | Multi-voxel pattern analysis in human hippocampal subfields |
title_full_unstemmed | Multi-voxel pattern analysis in human hippocampal subfields |
title_short | Multi-voxel pattern analysis in human hippocampal subfields |
title_sort | multi-voxel pattern analysis in human hippocampal subfields |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474998/ https://www.ncbi.nlm.nih.gov/pubmed/23087638 http://dx.doi.org/10.3389/fnhum.2012.00290 |
work_keys_str_mv | AT bonniciheidim multivoxelpatternanalysisinhumanhippocampalsubfields AT chadwickmartinj multivoxelpatternanalysisinhumanhippocampalsubfields AT kumarandharshan multivoxelpatternanalysisinhumanhippocampalsubfields AT hassabisdemis multivoxelpatternanalysisinhumanhippocampalsubfields AT weiskopfnikolaus multivoxelpatternanalysisinhumanhippocampalsubfields AT maguireeleanora multivoxelpatternanalysisinhumanhippocampalsubfields |