Cargando…

Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms

Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Desai, Dhwani K., Desai, Falguni D., LaRoche, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475125/
https://www.ncbi.nlm.nih.gov/pubmed/23087680
http://dx.doi.org/10.3389/fmicb.2012.00362
_version_ 1782246911926861824
author Desai, Dhwani K.
Desai, Falguni D.
LaRoche, Julie
author_facet Desai, Dhwani K.
Desai, Falguni D.
LaRoche, Julie
author_sort Desai, Dhwani K.
collection PubMed
description Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe(2+) transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly).
format Online
Article
Text
id pubmed-3475125
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-34751252012-10-19 Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms Desai, Dhwani K. Desai, Falguni D. LaRoche, Julie Front Microbiol Microbiology Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe(2+) transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly). Frontiers Media S.A. 2012-10-18 /pmc/articles/PMC3475125/ /pubmed/23087680 http://dx.doi.org/10.3389/fmicb.2012.00362 Text en Copyright © 2012 Desai, Desai and LaRoche. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Microbiology
Desai, Dhwani K.
Desai, Falguni D.
LaRoche, Julie
Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title_full Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title_fullStr Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title_full_unstemmed Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title_short Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
title_sort factors influencing the diversity of iron uptake systems in aquatic microorganisms
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475125/
https://www.ncbi.nlm.nih.gov/pubmed/23087680
http://dx.doi.org/10.3389/fmicb.2012.00362
work_keys_str_mv AT desaidhwanik factorsinfluencingthediversityofironuptakesystemsinaquaticmicroorganisms
AT desaifalgunid factorsinfluencingthediversityofironuptakesystemsinaquaticmicroorganisms
AT larochejulie factorsinfluencingthediversityofironuptakesystemsinaquaticmicroorganisms