Cargando…
Efficient Mining of Interesting Patterns in Large Biological Sequences
Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology,...
Autores principales: | Rashid, Md. Mamunur, Karim, Md. Rezaul, Jeong, Byeong-Soo, Choi, Ho-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475482/ https://www.ncbi.nlm.nih.gov/pubmed/23105928 http://dx.doi.org/10.5808/GI.2012.10.1.44 |
Ejemplares similares
-
An Efficient Approach to Mining Maximal Contiguous Frequent Patterns from Large DNA Sequence Databases
por: Karim, Md. Rezaul, et al.
Publicado: (2012) -
Efficient mining gapped sequential patterns for motifs in biological sequences
por: Liao, Vance Chiang-Chi, et al.
Publicado: (2013) -
Frequent contiguous pattern mining over biological sequences of protein misfolded diseases
por: Islam, Mohammad Shahedul, et al.
Publicado: (2021) -
Large scale machine learning with Spark: discover everything you need to build robust machine learning applications with Spark 2.0
por: Karim, Md Rezaul, et al.
Publicado: (2016) -
Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information
por: Hasan, Md. Mehedi, et al.
Publicado: (2019)