Cargando…

Temperature and composition dependent excitonic luminescence and exciton-phonon coupling in CdSeS nanocrystals

The yellow- and red-emitting CdSeS nanocrystals (NCs) synthesized through one-step organometallic synthesis method are uniformly assembled in polymethyl methacrylate (PMMA). A higher-energy emission band originates from band-edge excitonic state appeared at low temperature. With the Se dopant concen...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wenzhi, Yu, Dongqi, Ye, Hong-an, Gao, Yachen, Chang, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477061/
https://www.ncbi.nlm.nih.gov/pubmed/22682098
http://dx.doi.org/10.1186/1556-276X-7-301
Descripción
Sumario:The yellow- and red-emitting CdSeS nanocrystals (NCs) synthesized through one-step organometallic synthesis method are uniformly assembled in polymethyl methacrylate (PMMA). A higher-energy emission band originates from band-edge excitonic state appeared at low temperature. With the Se dopant concentration increasing, the luminescent spectra of CdSeS NCs have a red-shifted emission peak and a shorter luminescent lifetime, which is attributed to the existence of trapping state caused by surface defect and Se dopant. CdSeS NC shows a shorter luminescence lifetime and higher energy emission peak in PMMA matrix than that in toluene, indicating that the former is more favorable to transfer energy through exciton-phonon coupling. The upconversion luminescence (UCL) is observed using 800 nm femtosecond laser excitation. The pump power dependence demonstrated UCL spectra of yellow-emitting CdSeS NCs has a slope of 2.2, while that of red-emitting CdSeS NCs has a slope of 1.4. The results demonstrate that the two-photon absorption plays a dominating role when Se concentration of CdSeS NCs is lower, while phonon-assisted UCL by one-photon excitation gradually takes place with the amount of Se dopants increasing.