Cargando…

Concordance among gene expression-based predictors for ER-positive breast cancer treated with adjuvant tamoxifen

BACKGROUND: ER-positive (ER+ ) breast cancer includes all of the intrinsic molecular subtypes, although the luminal A and B subtypes predominate. In this study, we evaluated the ability of six clinically relevant genomic signatures to predict relapse in patients with ER+ tumors treated with adjuvant...

Descripción completa

Detalles Bibliográficos
Autores principales: Prat, A., Parker, J. S., Fan, C., Cheang, M. C. U., Miller, L. D., Bergh, J., Chia, S. K. L., Bernard, P. S., Nielsen, T. O., Ellis, M. J., Carey, L. A., Perou, C. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477878/
https://www.ncbi.nlm.nih.gov/pubmed/22532584
http://dx.doi.org/10.1093/annonc/mds080
Descripción
Sumario:BACKGROUND: ER-positive (ER+ ) breast cancer includes all of the intrinsic molecular subtypes, although the luminal A and B subtypes predominate. In this study, we evaluated the ability of six clinically relevant genomic signatures to predict relapse in patients with ER+ tumors treated with adjuvant tamoxifen only. METHODS: Four microarray datasets were combined and research-based versions of PAM50 intrinsic subtyping and risk of relapse (PAM50-ROR) score, 21-gene recurrence score (OncotypeDX), Mammaprint, Rotterdam 76 gene, index of sensitivity to endocrine therapy (SET) and an estrogen-induced gene set were evaluated. Distant relapse-free survival (DRFS) was estimated by Kaplan–Meier and log-rank tests, and multivariable analyses were done using Cox regression analysis. Harrell's C-index was also used to estimate performance. RESULTS: All signatures were prognostic in patients with ER+ node-negative tumors, whereas most were prognostic in ER+ node-positive disease. Among the signatures evaluated, PAM50-ROR, OncotypeDX, Mammaprint and SET were consistently found to be independent predictors of relapse. A combination of all signatures significantly increased the performance prediction. Importantly, low-risk tumors (>90% DRFS at 8.5 years) were identified by the majority of signatures only within node-negative disease, and these tumors were mostly luminal A (78%–100%). CONCLUSIONS: Most established genomic signatures were successful in outcome predictions in ER+ breast cancer and provided statistically independent information. From a clinical perspective, multiple signatures combined together most accurately predicted outcome, but a common finding was that each signature identified a subset of luminal A patients with node-negative disease who might be considered suitable candidates for adjuvant endocrine therapy alone.