Cargando…
Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning
The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478565/ https://www.ncbi.nlm.nih.gov/pubmed/22649181 http://dx.doi.org/10.1093/sysbio/sys055 |
_version_ | 1782247331588997120 |
---|---|
author | Ponciano, José Miguel Burleigh, J. Gordon Braun, Edward L. Taper, Mark L. |
author_facet | Ponciano, José Miguel Burleigh, J. Gordon Braun, Edward L. Taper, Mark L. |
author_sort | Ponciano, José Miguel |
collection | PubMed |
description | The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidance available as to when and why the parameters in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural parameter nonidentifiability (NI) and distinguish it from other parameter estimability problems, including when parameters are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and estimable, but only weakly so (WE). The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose nonidentifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect nonidentifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities. |
format | Online Article Text |
id | pubmed-3478565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34785652012-10-23 Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning Ponciano, José Miguel Burleigh, J. Gordon Braun, Edward L. Taper, Mark L. Syst Biol Regular Articles The success of model-based methods in phylogenetics has motivated much research aimed at generating new, biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and sound measures of performance. To date there has been little practical guidance available as to when and why the parameters in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural parameter nonidentifiability (NI) and distinguish it from other parameter estimability problems, including when parameters are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and estimable, but only weakly so (WE). The application of the DC theorem uses well-known and widely used Bayesian computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose nonidentifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect nonidentifiability while investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated. Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors, in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference, DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters, like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities. Oxford University Press 2012-12 2012-07-09 /pmc/articles/PMC3478565/ /pubmed/22649181 http://dx.doi.org/10.1093/sysbio/sys055 Text en © The Author(s) 2012. Published by Oxford University Press http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Articles Ponciano, José Miguel Burleigh, J. Gordon Braun, Edward L. Taper, Mark L. Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title | Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title_full | Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title_fullStr | Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title_full_unstemmed | Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title_short | Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning |
title_sort | assessing parameter identifiability in phylogenetic models using data cloning |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478565/ https://www.ncbi.nlm.nih.gov/pubmed/22649181 http://dx.doi.org/10.1093/sysbio/sys055 |
work_keys_str_mv | AT poncianojosemiguel assessingparameteridentifiabilityinphylogeneticmodelsusingdatacloning AT burleighjgordon assessingparameteridentifiabilityinphylogeneticmodelsusingdatacloning AT braunedwardl assessingparameteridentifiabilityinphylogeneticmodelsusingdatacloning AT tapermarkl assessingparameteridentifiabilityinphylogeneticmodelsusingdatacloning |