Cargando…
A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates
In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development c...
Autores principales: | Jiang, Hao, Zhao, Dehua, Cai, Ying, An, Shuqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478851/ http://dx.doi.org/10.3390/s120912437 |
Ejemplares similares
-
Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years
por: Zhao, Dehua, et al.
Publicado: (2013) -
Artificial Regulation of Water Level and Its Effect on Aquatic Macrophyte Distribution in Taihu Lake
por: Zhao, Dehua, et al.
Publicado: (2012) -
Remote sensing tree classification with a multilayer perceptron
por: Sumsion, G Rex, et al.
Publicado: (2019) -
Remote sensing image classification in R
por: Kamusoko, Courage
Publicado: (2019) -
Remote sensing of vegetation : principles, techniques, and applications /
por: Jones, Hamlyn G.
Publicado: (2010)