Cargando…

Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance

BACKGROUND: The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. RESULTS: In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liuqiang, Xu, Chenxi, Wang, Chao, Wang, Yucheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479025/
https://www.ncbi.nlm.nih.gov/pubmed/22834699
http://dx.doi.org/10.1186/1471-2229-12-118
_version_ 1782247386058326016
author Wang, Liuqiang
Xu, Chenxi
Wang, Chao
Wang, Yucheng
author_facet Wang, Liuqiang
Xu, Chenxi
Wang, Chao
Wang, Yucheng
author_sort Wang, Liuqiang
collection PubMed
description BACKGROUND: The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. RESULTS: In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. CONCLUSIONS: These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.
format Online
Article
Text
id pubmed-3479025
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34790252012-10-24 Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance Wang, Liuqiang Xu, Chenxi Wang, Chao Wang, Yucheng BMC Plant Biol Research Article BACKGROUND: The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. RESULTS: In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. CONCLUSIONS: These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions. BioMed Central 2012-07-26 /pmc/articles/PMC3479025/ /pubmed/22834699 http://dx.doi.org/10.1186/1471-2229-12-118 Text en Copyright ©2012 Wang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Liuqiang
Xu, Chenxi
Wang, Chao
Wang, Yucheng
Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title_full Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title_fullStr Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title_full_unstemmed Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title_short Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance
title_sort characterization of a eukaryotic translation initiation factor 5a homolog from tamarix androssowii involved in plant abiotic stress tolerance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479025/
https://www.ncbi.nlm.nih.gov/pubmed/22834699
http://dx.doi.org/10.1186/1471-2229-12-118
work_keys_str_mv AT wangliuqiang characterizationofaeukaryotictranslationinitiationfactor5ahomologfromtamarixandrossowiiinvolvedinplantabioticstresstolerance
AT xuchenxi characterizationofaeukaryotictranslationinitiationfactor5ahomologfromtamarixandrossowiiinvolvedinplantabioticstresstolerance
AT wangchao characterizationofaeukaryotictranslationinitiationfactor5ahomologfromtamarixandrossowiiinvolvedinplantabioticstresstolerance
AT wangyucheng characterizationofaeukaryotictranslationinitiationfactor5ahomologfromtamarixandrossowiiinvolvedinplantabioticstresstolerance