Cargando…
Convex Non-Negative Matrix Factorization for Brain Tumor Delimitation from MRSI Data
BACKGROUND: Pattern Recognition techniques can provide invaluable insights in the field of neuro-oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic Resonance (MR), in the modalities of spe...
Autores principales: | Ortega-Martorell, Sandra, Lisboa, Paulo J. G., Vellido, Alfredo, Simões, Rui V., Pumarola, Martí, Julià-Sapé, Margarida, Arús, Carles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479143/ https://www.ncbi.nlm.nih.gov/pubmed/23110107 http://dx.doi.org/10.1371/journal.pone.0047824 |
Ejemplares similares
-
Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours
por: Ortega-Martorell, Sandra, et al.
Publicado: (2012) -
Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI
por: Simões, Rui V, et al.
Publicado: (2010) -
Unraveling response to temozolomide in preclinical GL261 glioblastoma with MRI/MRSI using radiomics and signal source extraction
por: Núñez, Luis Miguel, et al.
Publicado: (2020) -
Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment
por: Arias-Ramos, Nuria, et al.
Publicado: (2017) -
A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data
por: Ortega-Martorell, Sandra, et al.
Publicado: (2013)