Cargando…
Co-clustering phenome–genome for phenotype classification and disease gene discovery
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases...
Autores principales: | Hwang, TaeHyun, Atluri, Gowtham, Xie, MaoQiang, Dey, Sanjoy, Hong, Changjin, Kumar, Vipin, Kuang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479160/ https://www.ncbi.nlm.nih.gov/pubmed/22735708 http://dx.doi.org/10.1093/nar/gks615 |
Ejemplares similares
-
PhenomeNET: a whole-phenome approach to disease gene discovery
por: Hoehndorf, Robert, et al.
Publicado: (2011) -
Network-based Phenome-Genome Association Prediction by Bi-Random Walk
por: Xie, MaoQiang, et al.
Publicado: (2015) -
Towards enhanced and interpretable clustering/classification in integrative genomics
por: Lu, Yang Young, et al.
Publicado: (2017) -
Microfluidic automated plasmid library enrichment for biosynthetic gene cluster discovery
por: Xu, Peng, et al.
Publicado: (2020) -
Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering
por: Kelley, David R., et al.
Publicado: (2012)