Cargando…

Evidence for a Role of a Cortico-Subcortical Network for Automatic and Unconscious Motor Inhibition of Manual Responses

It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long bee...

Descripción completa

Detalles Bibliográficos
Autores principales: D’Ostilio, Kevin, Collette, Fabienne, Phillips, Christophe, Garraux, Gaëtan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480469/
https://www.ncbi.nlm.nih.gov/pubmed/23110158
http://dx.doi.org/10.1371/journal.pone.0048007
Descripción
Sumario:It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA). In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI), producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness.