Cargando…
Tin Oxide Nanowires Suppress Herpes Simplex Virus-1 Entry and Cell-to-Cell Membrane Fusion
The advent of nanotechnology has ushered in the use of modified nanoparticles as potential antiviral agents against diseases such as herpes simplex virus 1 and 2 (HSV-1) (HSV-2), human immunodeficiency virus (HIV), monkeypox virus, and hepatitis B virus. Here we describe the application of tin oxide...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480479/ https://www.ncbi.nlm.nih.gov/pubmed/23110193 http://dx.doi.org/10.1371/journal.pone.0048147 |
Sumario: | The advent of nanotechnology has ushered in the use of modified nanoparticles as potential antiviral agents against diseases such as herpes simplex virus 1 and 2 (HSV-1) (HSV-2), human immunodeficiency virus (HIV), monkeypox virus, and hepatitis B virus. Here we describe the application of tin oxide (SnO(2)) nanowires as an effective treatment against HSV-1 infection. SnO(2) nanowires work as a carrier of negatively charged structures that compete with HSV-1 attachment to cell bound heparan sulfate (HS), therefore inhibiting entry and subsequent cell-to-cell spread. This promising new approach can be developed into a novel form of broad-spectrum antiviral therapy especially since HS has been shown to serve as a cellular co-receptor for a number of other viruses as well, including the respiratory syncytial virus, adeno-associated virus type 2, and human papilloma virus. |
---|