Cargando…

Molecular epidemiological studies on animal trypanosomiases in Ghana

BACKGROUND: African trypanosomes are extracellular protozoan parasites that are transmitted between mammalian hosts by the bite of an infected tsetse fly. Human African Trypanosomiasis (HAT) or sleeping sickness is caused by Trypanosoma brucei rhodesiense or T. brucei gambiense, while African Animal...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakayima, Jesca, Nakao, Ryo, Alhassan, Andy, Mahama, Charles, Afakye, Kofi, Sugimoto, Chihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480844/
https://www.ncbi.nlm.nih.gov/pubmed/23025330
http://dx.doi.org/10.1186/1756-3305-5-217
Descripción
Sumario:BACKGROUND: African trypanosomes are extracellular protozoan parasites that are transmitted between mammalian hosts by the bite of an infected tsetse fly. Human African Trypanosomiasis (HAT) or sleeping sickness is caused by Trypanosoma brucei rhodesiense or T. brucei gambiense, while African Animal Trypanosomiasis (AAT) is caused mainly by T. vivax, T. congolense, T. simiae,T. evansi and T. brucei brucei. Trypanosomiasis is of public health importance in humans and is also the major constraint for livestock productivity in sub-Saharan African countries. Scanty information exists about the trypanosomiasis status in Ghana especially regarding molecular epidemiology. Therefore, this study intended to apply molecular tools to identify and characterize trypanosomes in Ghana. METHODS: A total of 219 tsetse flies, 248 pigs and 146 cattle blood samples were collected from Adidome and Koforidua regions in Ghana in 2010. Initial PCR assays were conducted using the internal transcribed spacer one (ITS1) of ribosomal DNA (rDNA) primers, which can detect most of the pathogenic trypanosome species and T. vivax-specific cathepsin L-like gene primers. In addition, species- or subgroup-specific PCRs were performed for T. b. rhodesiense, T. b. gambiense, T. evansi and three subgroups of T. congolense. RESULTS: The overall prevalence of trypanosomes were 17.4% (38/219), 57.5% (84/146) and 28.6% (71/248) in tsetse flies, cattle and pigs, respectively. T. congolense subgroup-specific PCR revealed that T. congolense Savannah (52.6%) and T. congolense Forest (66.0%) were the endemic subgroups in Ghana with 18.6% being mixed infections. T. evansi was detected in a single tsetse fly. Human infective trypanosomes were not detected in the tested samples. CONCLUSION: Our results showed that there is a high prevalence of parasites in both tsetse flies and livestock in the study areas in Ghana. This enhances the need to strengthen control policies and institute measures that help prevent the spread of the parasites.