Cargando…

Pathway Distiller - multisource biological pathway consolidation

BACKGROUND: One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort...

Descripción completa

Detalles Bibliográficos
Autores principales: Doderer, Mark S, Anguiano, Zachry, Suresh, Uthra, Dashnamoorthy, Ravi, Bishop, Alexander JR, Chen, Yidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481446/
https://www.ncbi.nlm.nih.gov/pubmed/23134636
http://dx.doi.org/10.1186/1471-2164-13-S6-S18
_version_ 1782247740329164800
author Doderer, Mark S
Anguiano, Zachry
Suresh, Uthra
Dashnamoorthy, Ravi
Bishop, Alexander JR
Chen, Yidong
author_facet Doderer, Mark S
Anguiano, Zachry
Suresh, Uthra
Dashnamoorthy, Ravi
Bishop, Alexander JR
Chen, Yidong
author_sort Doderer, Mark S
collection PubMed
description BACKGROUND: One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. METHODS: After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. RESULTS: We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. CONCLUSIONS: By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments.
format Online
Article
Text
id pubmed-3481446
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34814462012-11-02 Pathway Distiller - multisource biological pathway consolidation Doderer, Mark S Anguiano, Zachry Suresh, Uthra Dashnamoorthy, Ravi Bishop, Alexander JR Chen, Yidong BMC Genomics Research BACKGROUND: One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. METHODS: After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. RESULTS: We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow researchers access to the methods and example microarray data described in this manuscript, and the ability to analyze their own gene list by using our unique consolidation methods. CONCLUSIONS: By combining several pathway systems, implementing different, but complementary pathway consolidation methods, and providing a user-friendly web-accessible tool, we have enabled users the ability to extract functional explanations of their genome wide experiments. BioMed Central 2012-10-26 /pmc/articles/PMC3481446/ /pubmed/23134636 http://dx.doi.org/10.1186/1471-2164-13-S6-S18 Text en Copyright ©2012 Doderer et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Doderer, Mark S
Anguiano, Zachry
Suresh, Uthra
Dashnamoorthy, Ravi
Bishop, Alexander JR
Chen, Yidong
Pathway Distiller - multisource biological pathway consolidation
title Pathway Distiller - multisource biological pathway consolidation
title_full Pathway Distiller - multisource biological pathway consolidation
title_fullStr Pathway Distiller - multisource biological pathway consolidation
title_full_unstemmed Pathway Distiller - multisource biological pathway consolidation
title_short Pathway Distiller - multisource biological pathway consolidation
title_sort pathway distiller - multisource biological pathway consolidation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481446/
https://www.ncbi.nlm.nih.gov/pubmed/23134636
http://dx.doi.org/10.1186/1471-2164-13-S6-S18
work_keys_str_mv AT doderermarks pathwaydistillermultisourcebiologicalpathwayconsolidation
AT anguianozachry pathwaydistillermultisourcebiologicalpathwayconsolidation
AT sureshuthra pathwaydistillermultisourcebiologicalpathwayconsolidation
AT dashnamoorthyravi pathwaydistillermultisourcebiologicalpathwayconsolidation
AT bishopalexanderjr pathwaydistillermultisourcebiologicalpathwayconsolidation
AT chenyidong pathwaydistillermultisourcebiologicalpathwayconsolidation