Cargando…

The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red l...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahrndorff, Simon, Kjærsgaard, Anders, Pertoldi, Cino, Loeschcke, Volker, Schou, Toke M., Skovgård, Henrik, Hald, Birthe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: University of Wisconsin Library 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481554/
http://dx.doi.org/10.1673/031.012.7101
Descripción
Sumario:Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.