Cargando…
Prevention of Disease Complications through Diagnostic Models: How to Tackle the Problem of Missing Data?
BACKGROUND: Diagnostic models are frequently used to assess the role of risk factors on disease complications, and therefore to avoid them. Missing data is an issue that challenges the model making. The aim of this study was to develop a diagnostic model to predict death in HIV/AIDS patients when mi...
Autores principales: | Baneshi, MR, Faramarzi, H, Marzban, M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481660/ https://www.ncbi.nlm.nih.gov/pubmed/23113124 |
Ejemplares similares
-
Assessment of Internal Validity of Prognostic Models through Bootstrapping and Multiple Imputation of Missing Data
por: Baneshi, MR, et al.
Publicado: (2012) -
Using Invention to Change How Students Tackle Problems
por: Taylor, Jared L., et al.
Publicado: (2010) -
Work the problem: how experts tackle workplace challenges
por: Stafford, Kathryn
Publicado: (2018) -
Does the Missing Data Imputation Method Affect the Composition and Performance of Prognostic Models?
por: Baneshi, M R, et al.
Publicado: (2012) -
How to avoid missing data and the problems they pose: design considerations
por: Lin, Julia Y., et al.
Publicado: (2012)