Cargando…

Use of Single-enzyme PCR-restriction Digestion Barcode Targeting the Internal Transcribed Spacers (ITS rDNA) to Identify Dermatophyte Species

BACKGROUND: Dermatophytes are the most common causative agents of superficial mycoses. Species identification of these fungi is important from therapeutic and epidemiological point of wive. Traditional approaches for identification of dermatophytes at the species level, relying on macroscopic and mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Rezaei-Matehkolaei, A, Makimura, K, Shidfar, MR, Zaini, F, Eshraghian, MR, Jalalizand, N, Nouripour-Sisakht, S, Hosseinpour, L, Mirhendi, H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tehran University of Medical Sciences 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481703/
https://www.ncbi.nlm.nih.gov/pubmed/23113152
Descripción
Sumario:BACKGROUND: Dermatophytes are the most common causative agents of superficial mycoses. Species identification of these fungi is important from therapeutic and epidemiological point of wive. Traditional approaches for identification of dermatophytes at the species level, relying on macroscopic and microscopic features of the colonies, usually are time-consuming and unreliable in many circumstances. Recently a broad varieties of rapid and accurate DNA-based techniques were successfuly utilized for species delineation of dermatophytes. METHODS: The ITS1-5.8S-ITS2 region of rDNA from various reference strains of dermatophyte species were amplified using the universal fungal primers ITS1 and ITS4.The PCR products were digested by a single restriction enzyme, MvaI. The enzyme was evaluated in both in silico and practical PCR-RFLP assay to find the exact differentiating restriction profiles for each species. To validate the standardized PCR-RFLP system, all tested strains were subjected to sequencing and sequence analysis. RESULTS: The obtained RFLP patterns were specific for many species including T. interdigitale, T. rubrum, T. violaceum, M. persicolor, M. audouinii, M. nanum (A. obtusum) and E. floccosum but were similar for some closely related species such as M. canis / M. ferrugineum. Sequencing of the ITS1-5.8S-ITS2 fragment from all type strains affirmed the RFLP findings. CONCLUSION: It was practically revealed that the ITS-PCR followed by MvaI-RFLP is a useful and reliable schema for identification and differentiation of several pathogenic species and can be used for rapid screening of even closely related species of dermatophytes in clinical and epidemiological settings.