Cargando…

Cerebral blood flow in Alzheimer’s disease

BACKGROUND: Alzheimer’s disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that...

Descripción completa

Detalles Bibliográficos
Autores principales: Roher, Alex E, Debbins, Josef P, Malek-Ahmadi, Michael, Chen, Kewei, Pipe, James G, Maze, Sharmeen, Belden, Christine, Maarouf, Chera L, Thiyyagura, Pradeep, Mo, Hua, Hunter, Jesse M, Kokjohn, Tyler A, Walker, Douglas G, Kruchowsky, Jane C, Belohlavek, Marek, Sabbagh, Marwan N, Beach, Thomas G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481957/
https://www.ncbi.nlm.nih.gov/pubmed/23109807
http://dx.doi.org/10.2147/VHRM.S34874
_version_ 1782247818671423488
author Roher, Alex E
Debbins, Josef P
Malek-Ahmadi, Michael
Chen, Kewei
Pipe, James G
Maze, Sharmeen
Belden, Christine
Maarouf, Chera L
Thiyyagura, Pradeep
Mo, Hua
Hunter, Jesse M
Kokjohn, Tyler A
Walker, Douglas G
Kruchowsky, Jane C
Belohlavek, Marek
Sabbagh, Marwan N
Beach, Thomas G
author_facet Roher, Alex E
Debbins, Josef P
Malek-Ahmadi, Michael
Chen, Kewei
Pipe, James G
Maze, Sharmeen
Belden, Christine
Maarouf, Chera L
Thiyyagura, Pradeep
Mo, Hua
Hunter, Jesse M
Kokjohn, Tyler A
Walker, Douglas G
Kruchowsky, Jane C
Belohlavek, Marek
Sabbagh, Marwan N
Beach, Thomas G
author_sort Roher, Alex E
collection PubMed
description BACKGROUND: Alzheimer’s disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia. METHODS: Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8) and compared the results with those from a group of age-matched nondemented control (NDC) subjects (n = 9). Clinical and psychometric testing was performed on all individuals, as well as obtaining their magnetic resonance imaging-based hippocampal volumes. RESULTS: Our experiments reveal that total cerebral blood flow was 20% lower in the AD group than in the NDC group, and that these values were directly correlated with pulse pressure and cognitive measures. The AD group had a significantly lower pulse pressure (mean AD 48, mean NDC 71; P = 0.0004). A significant group difference was also observed in their hippocampal volumes. Composite z-scores for clinical, psychometric, hippocampal volume, and hemodynamic data differed between the AD and NDC subjects, with values in the former being significantly lower (t = 12.00, df = 1, P = 0.001) than in the latter. CONCLUSION: These results indicate an association between brain hypoperfusion and the dementia of AD. Cardiovascular disease combined with brain hypoperfusion may participate in the pathogenesis/pathophysiology of neurodegenerative diseases. Future longitudinal and larger-scale confirmatory investigations measuring multidomain parameters are warranted.
format Online
Article
Text
id pubmed-3481957
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-34819572012-10-29 Cerebral blood flow in Alzheimer’s disease Roher, Alex E Debbins, Josef P Malek-Ahmadi, Michael Chen, Kewei Pipe, James G Maze, Sharmeen Belden, Christine Maarouf, Chera L Thiyyagura, Pradeep Mo, Hua Hunter, Jesse M Kokjohn, Tyler A Walker, Douglas G Kruchowsky, Jane C Belohlavek, Marek Sabbagh, Marwan N Beach, Thomas G Vasc Health Risk Manag Original Research BACKGROUND: Alzheimer’s disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia. METHODS: Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8) and compared the results with those from a group of age-matched nondemented control (NDC) subjects (n = 9). Clinical and psychometric testing was performed on all individuals, as well as obtaining their magnetic resonance imaging-based hippocampal volumes. RESULTS: Our experiments reveal that total cerebral blood flow was 20% lower in the AD group than in the NDC group, and that these values were directly correlated with pulse pressure and cognitive measures. The AD group had a significantly lower pulse pressure (mean AD 48, mean NDC 71; P = 0.0004). A significant group difference was also observed in their hippocampal volumes. Composite z-scores for clinical, psychometric, hippocampal volume, and hemodynamic data differed between the AD and NDC subjects, with values in the former being significantly lower (t = 12.00, df = 1, P = 0.001) than in the latter. CONCLUSION: These results indicate an association between brain hypoperfusion and the dementia of AD. Cardiovascular disease combined with brain hypoperfusion may participate in the pathogenesis/pathophysiology of neurodegenerative diseases. Future longitudinal and larger-scale confirmatory investigations measuring multidomain parameters are warranted. Dove Medical Press 2012 2012-10-23 /pmc/articles/PMC3481957/ /pubmed/23109807 http://dx.doi.org/10.2147/VHRM.S34874 Text en © 2012 Roher et al, publisher and licensee Dove Medical Press Ltd This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Roher, Alex E
Debbins, Josef P
Malek-Ahmadi, Michael
Chen, Kewei
Pipe, James G
Maze, Sharmeen
Belden, Christine
Maarouf, Chera L
Thiyyagura, Pradeep
Mo, Hua
Hunter, Jesse M
Kokjohn, Tyler A
Walker, Douglas G
Kruchowsky, Jane C
Belohlavek, Marek
Sabbagh, Marwan N
Beach, Thomas G
Cerebral blood flow in Alzheimer’s disease
title Cerebral blood flow in Alzheimer’s disease
title_full Cerebral blood flow in Alzheimer’s disease
title_fullStr Cerebral blood flow in Alzheimer’s disease
title_full_unstemmed Cerebral blood flow in Alzheimer’s disease
title_short Cerebral blood flow in Alzheimer’s disease
title_sort cerebral blood flow in alzheimer’s disease
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481957/
https://www.ncbi.nlm.nih.gov/pubmed/23109807
http://dx.doi.org/10.2147/VHRM.S34874
work_keys_str_mv AT roheralexe cerebralbloodflowinalzheimersdisease
AT debbinsjosefp cerebralbloodflowinalzheimersdisease
AT malekahmadimichael cerebralbloodflowinalzheimersdisease
AT chenkewei cerebralbloodflowinalzheimersdisease
AT pipejamesg cerebralbloodflowinalzheimersdisease
AT mazesharmeen cerebralbloodflowinalzheimersdisease
AT beldenchristine cerebralbloodflowinalzheimersdisease
AT maaroufcheral cerebralbloodflowinalzheimersdisease
AT thiyyagurapradeep cerebralbloodflowinalzheimersdisease
AT mohua cerebralbloodflowinalzheimersdisease
AT hunterjessem cerebralbloodflowinalzheimersdisease
AT kokjohntylera cerebralbloodflowinalzheimersdisease
AT walkerdouglasg cerebralbloodflowinalzheimersdisease
AT kruchowskyjanec cerebralbloodflowinalzheimersdisease
AT belohlavekmarek cerebralbloodflowinalzheimersdisease
AT sabbaghmarwann cerebralbloodflowinalzheimersdisease
AT beachthomasg cerebralbloodflowinalzheimersdisease