Cargando…

Evolution of specifier proteins in glucosinolate-containing plants

BACKGROUND: The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinas...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuchernig, Jennifer C, Burow, Meike, Wittstock, Ute
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482593/
https://www.ncbi.nlm.nih.gov/pubmed/22839361
http://dx.doi.org/10.1186/1471-2148-12-127
_version_ 1782247887046967296
author Kuchernig, Jennifer C
Burow, Meike
Wittstock, Ute
author_facet Kuchernig, Jennifer C
Burow, Meike
Wittstock, Ute
author_sort Kuchernig, Jennifer C
collection PubMed
description BACKGROUND: The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. RESULTS: Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. CONCLUSIONS: Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different Brassicaceae lineages as suggested by the phylogeny. The ability to form non-isothiocyanate products by specifier protein activity may provide plants with a selective advantage. The evolution of specifier proteins in the Brassicaceae demonstrates the plasticity of secondary metabolism within an activated plant defense system.
format Online
Article
Text
id pubmed-3482593
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34825932012-10-29 Evolution of specifier proteins in glucosinolate-containing plants Kuchernig, Jennifer C Burow, Meike Wittstock, Ute BMC Evol Biol Research Article BACKGROUND: The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. RESULTS: Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. CONCLUSIONS: Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different Brassicaceae lineages as suggested by the phylogeny. The ability to form non-isothiocyanate products by specifier protein activity may provide plants with a selective advantage. The evolution of specifier proteins in the Brassicaceae demonstrates the plasticity of secondary metabolism within an activated plant defense system. BioMed Central 2012-07-28 /pmc/articles/PMC3482593/ /pubmed/22839361 http://dx.doi.org/10.1186/1471-2148-12-127 Text en Copyright ©2012 Kuchernig et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kuchernig, Jennifer C
Burow, Meike
Wittstock, Ute
Evolution of specifier proteins in glucosinolate-containing plants
title Evolution of specifier proteins in glucosinolate-containing plants
title_full Evolution of specifier proteins in glucosinolate-containing plants
title_fullStr Evolution of specifier proteins in glucosinolate-containing plants
title_full_unstemmed Evolution of specifier proteins in glucosinolate-containing plants
title_short Evolution of specifier proteins in glucosinolate-containing plants
title_sort evolution of specifier proteins in glucosinolate-containing plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482593/
https://www.ncbi.nlm.nih.gov/pubmed/22839361
http://dx.doi.org/10.1186/1471-2148-12-127
work_keys_str_mv AT kuchernigjenniferc evolutionofspecifierproteinsinglucosinolatecontainingplants
AT burowmeike evolutionofspecifierproteinsinglucosinolatecontainingplants
AT wittstockute evolutionofspecifierproteinsinglucosinolatecontainingplants