Cargando…
uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells
Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resist...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482985/ https://www.ncbi.nlm.nih.gov/pubmed/22641287 http://dx.doi.org/10.3892/ijo.2012.1496 |
_version_ | 1782247928756174848 |
---|---|
author | ALAPATI, KIRANMAI GOPINATH, SREELATHA MALLA, RAMA RAO DASARI, VENKATA RAMESH RAO, JASTI S. |
author_facet | ALAPATI, KIRANMAI GOPINATH, SREELATHA MALLA, RAMA RAO DASARI, VENKATA RAMESH RAO, JASTI S. |
author_sort | ALAPATI, KIRANMAI |
collection | PubMed |
description | Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133(+)) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells. |
format | Online Article Text |
id | pubmed-3482985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-34829852012-10-29 uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells ALAPATI, KIRANMAI GOPINATH, SREELATHA MALLA, RAMA RAO DASARI, VENKATA RAMESH RAO, JASTI S. Int J Oncol Articles Despite advances in radiotherapeutic and chemotherapeutic techniques and aggressive surgical resection, the prognosis of glioblastoma patients is dismal. Accumulation of evidence indicates that some cancer cells survive even the most aggressive treatments, and these surviving cells, which are resistant to therapy and are perhaps essential for the malignancy, may be cancer stem cells. The CD133 surface marker is commonly used to isolate these extremely resistant glioma-initiating cells (GICs). In the present study, GICs which tested positive for the CD133 marker (CD133(+)) were isolated from both the established U251 cell line and the 5310 xenograft glioma cell line to study the events related to the molecular pathogenesis of these cells. Simultaneous down-regulation of uPAR and cathepsin B by shRNA (pUC) treatment caused the disruption of radiation-induced complex formation of pPKC θ/δ, integrin β1 and PKC ζ, integrin β1 in glioma cells. Further, pUC treatment inhibited PKC/integrin signaling via FAK by causing disassociation of FAK and the cytoskeletal molecules vinculin and α-actinin. Also, we observed the inhibition of ERK phosphorylation. This inhibition was mediated by pUC and directed a negative feedback mechanism over the FAK signaling molecules, which led to an extensive reduction in the signal for cytoskeletal organization generating migratory arrest. Altogether, it can be hypothesized that knockdown of uPAR and cathepsin B using shRNA is an effective strategy for controlling highly invasive glioma cells and extremely resistant glioma-initiating cells. D.A. Spandidos 2012-05-24 /pmc/articles/PMC3482985/ /pubmed/22641287 http://dx.doi.org/10.3892/ijo.2012.1496 Text en Copyright © 2012, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles ALAPATI, KIRANMAI GOPINATH, SREELATHA MALLA, RAMA RAO DASARI, VENKATA RAMESH RAO, JASTI S. uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title | uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title_full | uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title_fullStr | uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title_full_unstemmed | uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title_short | uPAR and cathepsin B knockdown inhibits radiation-induced PKC integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
title_sort | upar and cathepsin b knockdown inhibits radiation-induced pkc integrated integrin signaling to the cytoskeleton of glioma-initiating cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482985/ https://www.ncbi.nlm.nih.gov/pubmed/22641287 http://dx.doi.org/10.3892/ijo.2012.1496 |
work_keys_str_mv | AT alapatikiranmai uparandcathepsinbknockdowninhibitsradiationinducedpkcintegratedintegrinsignalingtothecytoskeletonofgliomainitiatingcells AT gopinathsreelatha uparandcathepsinbknockdowninhibitsradiationinducedpkcintegratedintegrinsignalingtothecytoskeletonofgliomainitiatingcells AT mallaramarao uparandcathepsinbknockdowninhibitsradiationinducedpkcintegratedintegrinsignalingtothecytoskeletonofgliomainitiatingcells AT dasarivenkataramesh uparandcathepsinbknockdowninhibitsradiationinducedpkcintegratedintegrinsignalingtothecytoskeletonofgliomainitiatingcells AT raojastis uparandcathepsinbknockdowninhibitsradiationinducedpkcintegratedintegrinsignalingtothecytoskeletonofgliomainitiatingcells |