Cargando…

Generalization of visuomotor adaptation depends on the spatial characteristic of visual workspace

The present study aims to address a novel aspect of visuomotor adaptation and its generalization. It is based on the assumption that the spatial structure of the distal action space is crucial for generalization. In the experiments, the distal action spaces could manifest either a symmetric or paral...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lei, Müsseler, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483104/
https://www.ncbi.nlm.nih.gov/pubmed/22990294
http://dx.doi.org/10.1007/s00221-012-3264-8
Descripción
Sumario:The present study aims to address a novel aspect of visuomotor adaptation and its generalization. It is based on the assumption that the spatial structure of the distal action space is crucial for generalization. In the experiments, the distal action spaces could manifest either a symmetric or parallel structure. The imposed visuomotor rotations in the adaptation and the following generalization were either the same or opposing each other. In the generalization phase, motor bias resulting from prior adaptation was observed, and it turned out to substantially depend on the property of the workspace. In Experiment 1 with a parallel workspace, preceding adaptation to the same rotation was more advantageous than adaptation to an opposing rotation. This observation was reversed in Experiment 2 with the symmetrical workspace: prior adaptation to an opposing rotation was more advantageous for the generalization than prior adaptation to the same rotation. Mechanisms possibly underlying the observed influence of the workspace configuration were discussed.