Cargando…
A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named e...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483229/ https://www.ncbi.nlm.nih.gov/pubmed/22901054 http://dx.doi.org/10.1186/1471-2105-13-207 |
_version_ | 1782247970112012288 |
---|---|
author | Verspoor, Karin Cohen, Kevin Bretonnel Lanfranchi, Arrick Warner, Colin Johnson, Helen L Roeder, Christophe Choi, Jinho D Funk, Christopher Malenkiy, Yuriy Eckert, Miriam Xue, Nianwen Baumgartner, William A Bada, Michael Palmer, Martha Hunter, Lawrence E |
author_facet | Verspoor, Karin Cohen, Kevin Bretonnel Lanfranchi, Arrick Warner, Colin Johnson, Helen L Roeder, Christophe Choi, Jinho D Funk, Christopher Malenkiy, Yuriy Eckert, Miriam Xue, Nianwen Baumgartner, William A Bada, Michael Palmer, Martha Hunter, Lawrence E |
author_sort | Verspoor, Karin |
collection | PubMed |
description | BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. |
format | Online Article Text |
id | pubmed-3483229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34832292012-11-05 A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools Verspoor, Karin Cohen, Kevin Bretonnel Lanfranchi, Arrick Warner, Colin Johnson, Helen L Roeder, Christophe Choi, Jinho D Funk, Christopher Malenkiy, Yuriy Eckert, Miriam Xue, Nianwen Baumgartner, William A Bada, Michael Palmer, Martha Hunter, Lawrence E BMC Bioinformatics Research Article BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. BioMed Central 2012-08-17 /pmc/articles/PMC3483229/ /pubmed/22901054 http://dx.doi.org/10.1186/1471-2105-13-207 Text en Copyright ©2012 Verspoor et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Verspoor, Karin Cohen, Kevin Bretonnel Lanfranchi, Arrick Warner, Colin Johnson, Helen L Roeder, Christophe Choi, Jinho D Funk, Christopher Malenkiy, Yuriy Eckert, Miriam Xue, Nianwen Baumgartner, William A Bada, Michael Palmer, Martha Hunter, Lawrence E A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title | A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title_full | A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title_fullStr | A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title_full_unstemmed | A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title_short | A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
title_sort | corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483229/ https://www.ncbi.nlm.nih.gov/pubmed/22901054 http://dx.doi.org/10.1186/1471-2105-13-207 |
work_keys_str_mv | AT verspoorkarin acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT cohenkevinbretonnel acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT lanfranchiarrick acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT warnercolin acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT johnsonhelenl acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT roederchristophe acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT choijinhod acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT funkchristopher acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT malenkiyyuriy acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT eckertmiriam acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT xuenianwen acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT baumgartnerwilliama acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT badamichael acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT palmermartha acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT hunterlawrencee acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT verspoorkarin corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT cohenkevinbretonnel corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT lanfranchiarrick corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT warnercolin corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT johnsonhelenl corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT roederchristophe corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT choijinhod corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT funkchristopher corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT malenkiyyuriy corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT eckertmiriam corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT xuenianwen corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT baumgartnerwilliama corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT badamichael corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT palmermartha corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools AT hunterlawrencee corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools |