Cargando…

A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools

BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named e...

Descripción completa

Detalles Bibliográficos
Autores principales: Verspoor, Karin, Cohen, Kevin Bretonnel, Lanfranchi, Arrick, Warner, Colin, Johnson, Helen L, Roeder, Christophe, Choi, Jinho D, Funk, Christopher, Malenkiy, Yuriy, Eckert, Miriam, Xue, Nianwen, Baumgartner, William A, Bada, Michael, Palmer, Martha, Hunter, Lawrence E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483229/
https://www.ncbi.nlm.nih.gov/pubmed/22901054
http://dx.doi.org/10.1186/1471-2105-13-207
_version_ 1782247970112012288
author Verspoor, Karin
Cohen, Kevin Bretonnel
Lanfranchi, Arrick
Warner, Colin
Johnson, Helen L
Roeder, Christophe
Choi, Jinho D
Funk, Christopher
Malenkiy, Yuriy
Eckert, Miriam
Xue, Nianwen
Baumgartner, William A
Bada, Michael
Palmer, Martha
Hunter, Lawrence E
author_facet Verspoor, Karin
Cohen, Kevin Bretonnel
Lanfranchi, Arrick
Warner, Colin
Johnson, Helen L
Roeder, Christophe
Choi, Jinho D
Funk, Christopher
Malenkiy, Yuriy
Eckert, Miriam
Xue, Nianwen
Baumgartner, William A
Bada, Michael
Palmer, Martha
Hunter, Lawrence E
author_sort Verspoor, Karin
collection PubMed
description BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications.
format Online
Article
Text
id pubmed-3483229
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34832292012-11-05 A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools Verspoor, Karin Cohen, Kevin Bretonnel Lanfranchi, Arrick Warner, Colin Johnson, Helen L Roeder, Christophe Choi, Jinho D Funk, Christopher Malenkiy, Yuriy Eckert, Miriam Xue, Nianwen Baumgartner, William A Bada, Michael Palmer, Martha Hunter, Lawrence E BMC Bioinformatics Research Article BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications. BioMed Central 2012-08-17 /pmc/articles/PMC3483229/ /pubmed/22901054 http://dx.doi.org/10.1186/1471-2105-13-207 Text en Copyright ©2012 Verspoor et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Verspoor, Karin
Cohen, Kevin Bretonnel
Lanfranchi, Arrick
Warner, Colin
Johnson, Helen L
Roeder, Christophe
Choi, Jinho D
Funk, Christopher
Malenkiy, Yuriy
Eckert, Miriam
Xue, Nianwen
Baumgartner, William A
Bada, Michael
Palmer, Martha
Hunter, Lawrence E
A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title_full A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title_fullStr A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title_full_unstemmed A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title_short A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
title_sort corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483229/
https://www.ncbi.nlm.nih.gov/pubmed/22901054
http://dx.doi.org/10.1186/1471-2105-13-207
work_keys_str_mv AT verspoorkarin acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT cohenkevinbretonnel acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT lanfranchiarrick acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT warnercolin acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT johnsonhelenl acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT roederchristophe acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT choijinhod acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT funkchristopher acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT malenkiyyuriy acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT eckertmiriam acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT xuenianwen acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT baumgartnerwilliama acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT badamichael acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT palmermartha acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT hunterlawrencee acorpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT verspoorkarin corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT cohenkevinbretonnel corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT lanfranchiarrick corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT warnercolin corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT johnsonhelenl corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT roederchristophe corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT choijinhod corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT funkchristopher corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT malenkiyyuriy corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT eckertmiriam corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT xuenianwen corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT baumgartnerwilliama corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT badamichael corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT palmermartha corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools
AT hunterlawrencee corpusoffulltextjournalarticlesisarobustevaluationtoolforrevealingdifferencesinperformanceofbiomedicalnaturallanguageprocessingtools