Cargando…

Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific

BACKGROUND: The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by...

Descripción completa

Detalles Bibliográficos
Autores principales: Montecinos, Alejandro, Broitman, Bernardo R, Faugeron, Sylvain, Haye, Pilar A, Tellier, Florence, Guillemin, Marie-Laure
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483259/
https://www.ncbi.nlm.nih.gov/pubmed/22731925
http://dx.doi.org/10.1186/1471-2148-12-97
_version_ 1782247977115451392
author Montecinos, Alejandro
Broitman, Bernardo R
Faugeron, Sylvain
Haye, Pilar A
Tellier, Florence
Guillemin, Marie-Laure
author_facet Montecinos, Alejandro
Broitman, Bernardo R
Faugeron, Sylvain
Haye, Pilar A
Tellier, Florence
Guillemin, Marie-Laure
author_sort Montecinos, Alejandro
collection PubMed
description BACKGROUND: The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by intense geologic activity and has experienced drastic geomorphological transformations linked to eustatic and isostatic changes during the Quaternary. In this study, we used two molecular markers to evaluate the existence of phylogeographic discontinuities and detect the genetic footprints of Pleistocene glaciations among Patagonian populations of Mazzaella laminarioides, a low-dispersal benthic intertidal red seaweed that inhabits along ~3,700 km of the Chilean coastal rocky shore. RESULTS: Three main genetic lineages were found within M. laminarioides. They are distributed along the Chilean coast in strict parapatry. The deep divergence among lineages suggests that they could be considered putative genetic sibling species. Unexpectedly, genetic breaks were not strictly concordant with the biogeographic breaks described in the region. A Northern lineage was restricted to a broad transition zone located between 30°S and 33°S and showed signals of a recent bottleneck. The reduction of population size could be related to warm events linked to El Niño Southern Oscillation, which is known to cause massive seaweed mortality in this region. To the south, we propose that transient habitat discontinuities driven by episodic tectonic uplifting of the shoreline around the Arauco region (37°S-38°S); one of the most active forearc-basins in the South East Pacific; could be at the origin of the Central/South genetic break. The large beaches, located around 38°S, are likely to contribute to the lineages’ integrity by limiting present gene flow. Finally, the Southern lineage, occupies an area affected by ice-cover during the last glaciations. Phylogeny suggested it is a derived clade and demographic analyses showed the lineage has a typical signature of postglacial recolonization from a northern glacial refugium area. CONCLUSIONS: Even if environmental adaptation could have strengthened divergence among lineages in M. laminarioides, low dispersal capacity and small population size are sufficient to generate phylogeographic discontinuities determined by genetic drift alone. Interestingly, our results confirm that seaweed population connectivity over large geographic scales does not rely only on dispersal capacity but also seem to depend highly on substratum availability and population density of the receiving locality.
format Online
Article
Text
id pubmed-3483259
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34832592012-10-30 Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific Montecinos, Alejandro Broitman, Bernardo R Faugeron, Sylvain Haye, Pilar A Tellier, Florence Guillemin, Marie-Laure BMC Evol Biol Research Article BACKGROUND: The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by intense geologic activity and has experienced drastic geomorphological transformations linked to eustatic and isostatic changes during the Quaternary. In this study, we used two molecular markers to evaluate the existence of phylogeographic discontinuities and detect the genetic footprints of Pleistocene glaciations among Patagonian populations of Mazzaella laminarioides, a low-dispersal benthic intertidal red seaweed that inhabits along ~3,700 km of the Chilean coastal rocky shore. RESULTS: Three main genetic lineages were found within M. laminarioides. They are distributed along the Chilean coast in strict parapatry. The deep divergence among lineages suggests that they could be considered putative genetic sibling species. Unexpectedly, genetic breaks were not strictly concordant with the biogeographic breaks described in the region. A Northern lineage was restricted to a broad transition zone located between 30°S and 33°S and showed signals of a recent bottleneck. The reduction of population size could be related to warm events linked to El Niño Southern Oscillation, which is known to cause massive seaweed mortality in this region. To the south, we propose that transient habitat discontinuities driven by episodic tectonic uplifting of the shoreline around the Arauco region (37°S-38°S); one of the most active forearc-basins in the South East Pacific; could be at the origin of the Central/South genetic break. The large beaches, located around 38°S, are likely to contribute to the lineages’ integrity by limiting present gene flow. Finally, the Southern lineage, occupies an area affected by ice-cover during the last glaciations. Phylogeny suggested it is a derived clade and demographic analyses showed the lineage has a typical signature of postglacial recolonization from a northern glacial refugium area. CONCLUSIONS: Even if environmental adaptation could have strengthened divergence among lineages in M. laminarioides, low dispersal capacity and small population size are sufficient to generate phylogeographic discontinuities determined by genetic drift alone. Interestingly, our results confirm that seaweed population connectivity over large geographic scales does not rely only on dispersal capacity but also seem to depend highly on substratum availability and population density of the receiving locality. BioMed Central 2012-06-25 /pmc/articles/PMC3483259/ /pubmed/22731925 http://dx.doi.org/10.1186/1471-2148-12-97 Text en Copyright ©2012 Montecinos et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Montecinos, Alejandro
Broitman, Bernardo R
Faugeron, Sylvain
Haye, Pilar A
Tellier, Florence
Guillemin, Marie-Laure
Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title_full Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title_fullStr Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title_full_unstemmed Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title_short Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific
title_sort species replacement along a linear coastal habitat: phylogeography and speciation in the red alga mazzaella laminarioides along the south east pacific
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483259/
https://www.ncbi.nlm.nih.gov/pubmed/22731925
http://dx.doi.org/10.1186/1471-2148-12-97
work_keys_str_mv AT montecinosalejandro speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific
AT broitmanbernardor speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific
AT faugeronsylvain speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific
AT hayepilara speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific
AT tellierflorence speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific
AT guilleminmarielaure speciesreplacementalongalinearcoastalhabitatphylogeographyandspeciationintheredalgamazzaellalaminarioidesalongthesoutheastpacific