Cargando…
Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483300/ https://www.ncbi.nlm.nih.gov/pubmed/23144716 http://dx.doi.org/10.1371/journal.pone.0047945 |
_version_ | 1782247986767593472 |
---|---|
author | Heacock, Michelle Poltoratsky, Vladimir Prasad, Rajendra Wilson, Samuel H. |
author_facet | Heacock, Michelle Poltoratsky, Vladimir Prasad, Rajendra Wilson, Samuel H. |
author_sort | Heacock, Michelle |
collection | PubMed |
description | To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5′-sugar phosphate group (i.e., 5′-deoxyribose phosphate or 5′-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5′-end, i.e., 5′-dRP group, is the actual cytotoxic lesion. In providing a 5′-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5′-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5′-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5′-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5′-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5′-dRP group. |
format | Online Article Text |
id | pubmed-3483300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34833002012-11-09 Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae Heacock, Michelle Poltoratsky, Vladimir Prasad, Rajendra Wilson, Samuel H. PLoS One Research Article To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1) open reading frame (ORF) with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol) β. The aim was to probe the effect of removal of the incised abasic site 5′-sugar phosphate group (i.e., 5′-deoxyribose phosphate or 5′-dRP) in protection against methyl methanesulfonate (MMS)-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1) was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5′-end, i.e., 5′-dRP group, is the actual cytotoxic lesion. In providing a 5′-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5′-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1)-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5′-dRP lyase or polymerase activity were expressed in rad27(fen1)-null cells. The 5′-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5′-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1) protection against MMS in wild-type cells is due to elimination of the 5′-dRP group. Public Library of Science 2012-10-29 /pmc/articles/PMC3483300/ /pubmed/23144716 http://dx.doi.org/10.1371/journal.pone.0047945 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Heacock, Michelle Poltoratsky, Vladimir Prasad, Rajendra Wilson, Samuel H. Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae |
title | Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
|
title_full | Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
|
title_fullStr | Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
|
title_full_unstemmed | Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
|
title_short | Evidence for Abasic Site Sugar Phosphate-Mediated Cytotoxicity in Alkylating Agent Treated Saccharomyces cerevisiae
|
title_sort | evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483300/ https://www.ncbi.nlm.nih.gov/pubmed/23144716 http://dx.doi.org/10.1371/journal.pone.0047945 |
work_keys_str_mv | AT heacockmichelle evidenceforabasicsitesugarphosphatemediatedcytotoxicityinalkylatingagenttreatedsaccharomycescerevisiae AT poltoratskyvladimir evidenceforabasicsitesugarphosphatemediatedcytotoxicityinalkylatingagenttreatedsaccharomycescerevisiae AT prasadrajendra evidenceforabasicsitesugarphosphatemediatedcytotoxicityinalkylatingagenttreatedsaccharomycescerevisiae AT wilsonsamuelh evidenceforabasicsitesugarphosphatemediatedcytotoxicityinalkylatingagenttreatedsaccharomycescerevisiae |