Cargando…
Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd
Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation ma...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483304/ https://www.ncbi.nlm.nih.gov/pubmed/23144723 http://dx.doi.org/10.1371/journal.pone.0048028 |
_version_ | 1782247987711311872 |
---|---|
author | Zhou, Lei Liu, Yu Lu, Li Lu, Xinzheng Dixon, Richard A. F. |
author_facet | Zhou, Lei Liu, Yu Lu, Li Lu, Xinzheng Dixon, Richard A. F. |
author_sort | Zhou, Lei |
collection | PubMed |
description | Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation may possibly confound the observations. Moreover, due to the use of a cardiac reporter (Myh6) selection strategy for induced cardiomyocyte enrichment, and the lack of tracking signals for each transcription factors, individual roles of each transcription factors in activating cardiac gene expression in mammalian non-myoblastic cells have never been elucidated. Answers to these questions are an important step toward cardiomyocyte regeneration. Because mouse 10T1/2 fibroblasts are non-myoblastic in nature and can be induced to express genes of all three types of muscle cells, they are an ideal model for the analysis of cardiac and non-cardiac gene activation after induction. We constructed bi-cistronic lentiviral vectors, capable of expressing cardiac transcription factors along with different fluorescent tracking signals. By infecting 10T1/2 fibroblasts with Nkx2-5, Tbx5, Gata4 or Myocd cardiac transcription factor lentivirus alone or different combinations, we found that only Tbx5+Myocd and Tbx5+Gata4+Myocd combinations induced Myh6 and Tnnt2 cardiac marker protein expression. Microarray-based gene ontology analysis revealed that Tbx5 alone activated genes involved in the Wnt receptor signaling pathway and inhibited genes involved in a number of cardiac-related processes. Myocd alone activated genes involved in a number of cardiac-related processes and inhibited genes involved in the Wnt receptor signaling pathway and non-cardiac processes. Gata4 alone inhibited genes involved in non-cardiac processes. Tbx5+Gata4+Myocd was the most effective activator of genes associated with cardiac-related processes. Unlike Tbx5, Gata4, Myocd alone or Tbx5+Myocd, Tbx5+Gata4+Myocd activated the fewest genes associated with non-cardiac processes. Conclusively, Tbx5, Gata4 and Myocd play different roles in cardiac gene activation in mammalian non-myoblastic cells. Tbx5+Gata4+Myocd activates the most cardiac and the least non-cardiac gene expression. |
format | Online Article Text |
id | pubmed-3483304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34833042012-11-09 Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd Zhou, Lei Liu, Yu Lu, Li Lu, Xinzheng Dixon, Richard A. F. PLoS One Research Article Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation may possibly confound the observations. Moreover, due to the use of a cardiac reporter (Myh6) selection strategy for induced cardiomyocyte enrichment, and the lack of tracking signals for each transcription factors, individual roles of each transcription factors in activating cardiac gene expression in mammalian non-myoblastic cells have never been elucidated. Answers to these questions are an important step toward cardiomyocyte regeneration. Because mouse 10T1/2 fibroblasts are non-myoblastic in nature and can be induced to express genes of all three types of muscle cells, they are an ideal model for the analysis of cardiac and non-cardiac gene activation after induction. We constructed bi-cistronic lentiviral vectors, capable of expressing cardiac transcription factors along with different fluorescent tracking signals. By infecting 10T1/2 fibroblasts with Nkx2-5, Tbx5, Gata4 or Myocd cardiac transcription factor lentivirus alone or different combinations, we found that only Tbx5+Myocd and Tbx5+Gata4+Myocd combinations induced Myh6 and Tnnt2 cardiac marker protein expression. Microarray-based gene ontology analysis revealed that Tbx5 alone activated genes involved in the Wnt receptor signaling pathway and inhibited genes involved in a number of cardiac-related processes. Myocd alone activated genes involved in a number of cardiac-related processes and inhibited genes involved in the Wnt receptor signaling pathway and non-cardiac processes. Gata4 alone inhibited genes involved in non-cardiac processes. Tbx5+Gata4+Myocd was the most effective activator of genes associated with cardiac-related processes. Unlike Tbx5, Gata4, Myocd alone or Tbx5+Myocd, Tbx5+Gata4+Myocd activated the fewest genes associated with non-cardiac processes. Conclusively, Tbx5, Gata4 and Myocd play different roles in cardiac gene activation in mammalian non-myoblastic cells. Tbx5+Gata4+Myocd activates the most cardiac and the least non-cardiac gene expression. Public Library of Science 2012-10-29 /pmc/articles/PMC3483304/ /pubmed/23144723 http://dx.doi.org/10.1371/journal.pone.0048028 Text en © 2012 Zhou et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhou, Lei Liu, Yu Lu, Li Lu, Xinzheng Dixon, Richard A. F. Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title | Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title_full | Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title_fullStr | Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title_full_unstemmed | Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title_short | Cardiac Gene Activation Analysis in Mammalian Non-Myoblasic Cells by Nkx2-5, Tbx5, Gata4 and Myocd |
title_sort | cardiac gene activation analysis in mammalian non-myoblasic cells by nkx2-5, tbx5, gata4 and myocd |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483304/ https://www.ncbi.nlm.nih.gov/pubmed/23144723 http://dx.doi.org/10.1371/journal.pone.0048028 |
work_keys_str_mv | AT zhoulei cardiacgeneactivationanalysisinmammaliannonmyoblasiccellsbynkx25tbx5gata4andmyocd AT liuyu cardiacgeneactivationanalysisinmammaliannonmyoblasiccellsbynkx25tbx5gata4andmyocd AT luli cardiacgeneactivationanalysisinmammaliannonmyoblasiccellsbynkx25tbx5gata4andmyocd AT luxinzheng cardiacgeneactivationanalysisinmammaliannonmyoblasiccellsbynkx25tbx5gata4andmyocd AT dixonrichardaf cardiacgeneactivationanalysisinmammaliannonmyoblasiccellsbynkx25tbx5gata4andmyocd |