Cargando…

Silent synapses in selectively activated nucleus accumbens neurons following cocaine-sensitization

Cocaine-induced alterations in synaptic glutamate function in nucleus accumbens are thought to mediate drug-related behaviors such as psychomotor sensitization. However, previous studies examined global alterations in randomly selected accumbens neurons regardless of their activation state during co...

Descripción completa

Detalles Bibliográficos
Autores principales: Koya, Eisuke, Cruz, Fabio C., Ator, Robert, Golden, Sam A., Hoffman, Alexander F., Lupica, Carl R., Hope, Bruce T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483356/
https://www.ncbi.nlm.nih.gov/pubmed/23023294
http://dx.doi.org/10.1038/nn.3232
Descripción
Sumario:Cocaine-induced alterations in synaptic glutamate function in nucleus accumbens are thought to mediate drug-related behaviors such as psychomotor sensitization. However, previous studies examined global alterations in randomly selected accumbens neurons regardless of their activation state during cocaine-induced behavior. We recently found that a minority of strongly activated Fos-expressing accumbens neurons are necessary for cocaine-induced psychomotor sensitization while the majority of accumbens neurons are less directly involved. Here, we assessed synaptic alterations in these strongly activated accumbens neurons in c-fos-GFP mice that express a fusion protein of Fos and green fluorescent protein (GFP) in strongly activated neurons and compared these alterations with those in surrounding non-activated neurons. Cocaine sensitization produced higher levels of ‘silent synapses’ that contained functional NMDA receptors and non-functional AMPA receptors in only GFP-positive neurons, 6–11 days after sensitization. Thus unique synaptic alterations are induced in the most strongly activated accumbens neurons that mediate psychomotor sensitization.