Cargando…

Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

BACKGROUND: To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. MATERIALS AND METHODS: Twenty-one consecutive patients treated with image-guided SBRT for primary and seco...

Descripción completa

Detalles Bibliográficos
Autores principales: Sweeney, Reinhart A, Seubert, Benedikt, Stark, Silke, Homann, Vanessa, Müller, Gerd, Flentje, Michael, Guckenberger, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484063/
https://www.ncbi.nlm.nih.gov/pubmed/22682767
http://dx.doi.org/10.1186/1748-717X-7-81
_version_ 1782248092909699072
author Sweeney, Reinhart A
Seubert, Benedikt
Stark, Silke
Homann, Vanessa
Müller, Gerd
Flentje, Michael
Guckenberger, Matthias
author_facet Sweeney, Reinhart A
Seubert, Benedikt
Stark, Silke
Homann, Vanessa
Müller, Gerd
Flentje, Michael
Guckenberger, Matthias
author_sort Sweeney, Reinhart A
collection PubMed
description BACKGROUND: To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. MATERIALS AND METHODS: Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. RESULTS: Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm (one standard deviation). Inter-observer variability was not different between the three ROs compared to the three RTTs. CONCLUSIONS: Respiration correlated 4D-CBCT improves the accuracy of image-guidance by more precise target localization in the presence of breathing induced target motion and by reduced inter-observer variability.
format Online
Article
Text
id pubmed-3484063
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-34840632012-10-31 Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors Sweeney, Reinhart A Seubert, Benedikt Stark, Silke Homann, Vanessa Müller, Gerd Flentje, Michael Guckenberger, Matthias Radiat Oncol Review BACKGROUND: To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. MATERIALS AND METHODS: Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. RESULTS: Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm (one standard deviation). Inter-observer variability was not different between the three ROs compared to the three RTTs. CONCLUSIONS: Respiration correlated 4D-CBCT improves the accuracy of image-guidance by more precise target localization in the presence of breathing induced target motion and by reduced inter-observer variability. BioMed Central 2012-06-08 /pmc/articles/PMC3484063/ /pubmed/22682767 http://dx.doi.org/10.1186/1748-717X-7-81 Text en Copyright ©2012 Sweeney et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Sweeney, Reinhart A
Seubert, Benedikt
Stark, Silke
Homann, Vanessa
Müller, Gerd
Flentje, Michael
Guckenberger, Matthias
Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title_full Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title_fullStr Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title_full_unstemmed Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title_short Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors
title_sort accuracy and inter-observer variability of 3d versus 4d cone-beam ct based image-guidance in sbrt for lung tumors
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484063/
https://www.ncbi.nlm.nih.gov/pubmed/22682767
http://dx.doi.org/10.1186/1748-717X-7-81
work_keys_str_mv AT sweeneyreinharta accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT seubertbenedikt accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT starksilke accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT homannvanessa accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT mullergerd accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT flentjemichael accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors
AT guckenbergermatthias accuracyandinterobservervariabilityof3dversus4dconebeamctbasedimageguidanceinsbrtforlungtumors