Cargando…

Loss of muscleblind-like 1 promotes invasive mesenchyme formation in endocardial cushions by stimulating autocrine TGFβ3

BACKGROUND: Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal trans...

Descripción completa

Detalles Bibliográficos
Autores principales: LeMasters, Kathryn E, Blech-Hermoni, Yotam, Stillwagon, Samantha J, Vajda, Natalie A, Ladd, Andrea N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484067/
https://www.ncbi.nlm.nih.gov/pubmed/22866814
http://dx.doi.org/10.1186/1471-213X-12-22
Descripción
Sumario:BACKGROUND: Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal transition in response to paracrine and autocrine transforming growth factor β (TGFβ) signals. We previously demonstrated that the RNA binding protein muscleblind-like 1 (MBNL1) is expressed specifically in the cushion endocardium, and knockdown of MBNL1 in stage 14 embryonic chicken AVC explants enhances TGFβ-dependent endocardial cell invasion. RESULTS: In this study, we demonstrate that the effect of MBNL1 knockdown on invasion remains dependent on TGFβ3 after it is no longer required to induce basal levels of invasion. TGFβ3, but not TGFβ2, levels are elevated in medium conditioned by MBNL1-depleted AVC explants. TGFβ3 is elevated even when the myocardium is removed, indicating that MBNL1 modulates autocrine TGFβ3 production in the endocardium. More TGFβ3-positive cells are observed in the endocardial monolayer following MBNL1 knockdown. Addition of exogenous TGFβ3 to AVC explants recapitulates the effects of MBNL1 knockdown. Time course experiments demonstrate that knockdown of MBNL1 induces precocious TGFβ3 secretion, and early exposure to excess TGFβ3 induces precocious invasion. MBNL1 expression precedes TGFβ3 in the AVC endocardium, consistent with a role in preventing precocious autocrine TGFβ3 signaling. The stimulatory effects of MBNL1 knockdown on invasion are lost in stage 16 AVC explants. Knockdown of MBNL1 in OFT explants similarly enhances cell invasion, but not activation. TGFβ is necessary and sufficient to mediate this effect. CONCLUSIONS: Taken together, these data support a model in which MBNL1 negatively regulates cell invasion in the endocardial cushions by restricting the magnitude and timing of endocardial-derived TGFβ3 production.