Cargando…
Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers
Septin-family proteins assemble into rod-shaped heteromeric complexes that form higher-order arrangements at the cell cortex, where they serve apparently conserved functions as diffusion barriers and molecular scaffolds. There are 13 confirmed septin paralogues in mammals, which may be ubiquitous or...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484102/ https://www.ncbi.nlm.nih.gov/pubmed/22956766 http://dx.doi.org/10.1091/mbc.E12-06-0486 |
_version_ | 1782248100914528256 |
---|---|
author | Sellin, Mikael E. Stenmark, Sonja Gullberg, Martin |
author_facet | Sellin, Mikael E. Stenmark, Sonja Gullberg, Martin |
author_sort | Sellin, Mikael E. |
collection | PubMed |
description | Septin-family proteins assemble into rod-shaped heteromeric complexes that form higher-order arrangements at the cell cortex, where they serve apparently conserved functions as diffusion barriers and molecular scaffolds. There are 13 confirmed septin paralogues in mammals, which may be ubiquitous or tissue specific. Septin hetero-oligomerization appears homology subgroup directed, which in turn determines the subunit arrangement of six- to eight-subunit core heteromers. Here we address functional properties of human SEPT9, which, due to variable mRNA splicing, exists as multiple isoforms that differ between tissues. Myeloid K562 cells express three SEPT9 isoforms, all of which have an equal propensity to hetero-oligomerize with SEPT7-containing hexamers to generate octameric heteromers. However, due to limiting amounts of SEPT9, K562 cells contain both hexameric and octameric heteromers. To generate cell lines with controllable hexamer-to-octamer ratios and that express single SEPT9 isoforms, we developed a gene product replacement strategy. By this means we identified SEPT9 isoform–specific properties that either facilitate septin heteromer polymerization along microtubules or modulate the size range of submembranous septin disks—a prevalent septin structure in nonadhered cells. Our findings show that the SEPT9 expression level directs the hexamer-to-octamer ratio, and that the isoform composition and expression level together determine higher-order arrangements of septins. |
format | Online Article Text |
id | pubmed-3484102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-34841022013-01-16 Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers Sellin, Mikael E. Stenmark, Sonja Gullberg, Martin Mol Biol Cell Articles Septin-family proteins assemble into rod-shaped heteromeric complexes that form higher-order arrangements at the cell cortex, where they serve apparently conserved functions as diffusion barriers and molecular scaffolds. There are 13 confirmed septin paralogues in mammals, which may be ubiquitous or tissue specific. Septin hetero-oligomerization appears homology subgroup directed, which in turn determines the subunit arrangement of six- to eight-subunit core heteromers. Here we address functional properties of human SEPT9, which, due to variable mRNA splicing, exists as multiple isoforms that differ between tissues. Myeloid K562 cells express three SEPT9 isoforms, all of which have an equal propensity to hetero-oligomerize with SEPT7-containing hexamers to generate octameric heteromers. However, due to limiting amounts of SEPT9, K562 cells contain both hexameric and octameric heteromers. To generate cell lines with controllable hexamer-to-octamer ratios and that express single SEPT9 isoforms, we developed a gene product replacement strategy. By this means we identified SEPT9 isoform–specific properties that either facilitate septin heteromer polymerization along microtubules or modulate the size range of submembranous septin disks—a prevalent septin structure in nonadhered cells. Our findings show that the SEPT9 expression level directs the hexamer-to-octamer ratio, and that the isoform composition and expression level together determine higher-order arrangements of septins. The American Society for Cell Biology 2012-11-01 /pmc/articles/PMC3484102/ /pubmed/22956766 http://dx.doi.org/10.1091/mbc.E12-06-0486 Text en © 2012 Sellin et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell BD; are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles Sellin, Mikael E. Stenmark, Sonja Gullberg, Martin Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title | Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title_full | Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title_fullStr | Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title_full_unstemmed | Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title_short | Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
title_sort | mammalian sept9 isoforms direct microtubule-dependent arrangements of septin core heteromers |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484102/ https://www.ncbi.nlm.nih.gov/pubmed/22956766 http://dx.doi.org/10.1091/mbc.E12-06-0486 |
work_keys_str_mv | AT sellinmikaele mammaliansept9isoformsdirectmicrotubuledependentarrangementsofseptincoreheteromers AT stenmarksonja mammaliansept9isoformsdirectmicrotubuledependentarrangementsofseptincoreheteromers AT gullbergmartin mammaliansept9isoformsdirectmicrotubuledependentarrangementsofseptincoreheteromers |