Cargando…

Nucleolar AATF regulates c-Jun–mediated apoptosis

The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferraris, Saima E., Isoniemi, Kimmo, Torvaldson, Elin, Anckar, Julius, Westermarck, Jukka, Eriksson, John E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484108/
https://www.ncbi.nlm.nih.gov/pubmed/22933572
http://dx.doi.org/10.1091/mbc.E12-05-0419
Descripción
Sumario:The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucleolar stress sensor, which is required as a cofactor for c-Jun–mediated apoptosis. Overexpression or down-regulation of AATF expression levels led to a respective increase or decrease in the amount of activated and phosphorylated c-Jun with a proportional alteration in the induction levels of the proapoptotic c-Jun target genes FasL and TNF-α. Accordingly, AATF promoted commitment of ultraviolet (UV)-irradiated cells to c-Jun-dependent apoptosis. Whereas AATF overexpression potentiated UV-induced apoptosis in wild-type cells, c-Jun–deficient mouse embryonic fibroblasts were resistant to AATF-mediated apoptosis induction. Furthermore, AATF mutants defective in c-Jun binding were also defective in inducing AP-1 activity and c-Jun–mediated apoptosis. UV irradiation induced a translocation of AATF from the nucleolus to the nucleus, thereby enabling its physical association to c-Jun. Analysis of AATF deletion mutants revealed that the AATF domains required for compartmentalization, c-Jun binding, and enhancement of c-Jun transcriptional activity were all also required to induce c-Jun–dependent apoptosis. These results identify AATF as a nucleolar-confined c-Jun cofactor whose expression levels and spatial distribution determine the stress-induced activity of c-Jun and the levels of c-Jun–mediated apoptosis.