Cargando…
Identification of Genes Required for Alternative Oxidase Production in the Neurospora crassa Gene Knockout Library
The alternative oxidase (AOX) of Neurospora crassa transfers electrons from ubiquinol to oxygen. The enzyme is not expressed under normal conditions. However, when the function of the standard electron transport chain is compromised, AOX is induced, providing cells with a means to continue respirati...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484665/ https://www.ncbi.nlm.nih.gov/pubmed/23173086 http://dx.doi.org/10.1534/g3.112.004218 |
Sumario: | The alternative oxidase (AOX) of Neurospora crassa transfers electrons from ubiquinol to oxygen. The enzyme is not expressed under normal conditions. However, when the function of the standard electron transport chain is compromised, AOX is induced, providing cells with a means to continue respiration and growth. Induction of the enzyme represents a form of retrograde regulation because AOX is encoded by a nuclear gene that responds to signals produced from inefficiently functioning mitochondria. To identify genes required for AOX expression, we have screened the N. crassa gene knockout library for strains that are unable to grow in the presence of antimycin A, an inhibitor of complex III of the standard electron transport chain. From the 7800 strains containing knockouts of different genes, we identified 62 strains that have reduced levels of AOX when grown under conditions known to induce the enzyme. Some strains have virtually no AOX, whereas others have only a slight reduction of the protein. A broad range of seemingly unrelated functions are represented in the knockouts. For example, we identified transcription factors, kinases, the mitochondrial import receptor Tom70, three subunits of the COP9 signalosome, a monothiol glutaredoxin, and several hypothetical proteins as being required for wild-type levels of AOX production. Our results suggest that defects in many signaling or metabolic pathways have a negative effect on AOX expression and imply that complex systems control production of the enzyme. |
---|