Cargando…
Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1
Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485210/ https://www.ncbi.nlm.nih.gov/pubmed/23119018 http://dx.doi.org/10.1371/journal.pone.0048440 |
_version_ | 1782248258392817664 |
---|---|
author | Zecchi, Lisa Lo Piano, Ambra Suzuki, Yuki Cañas, Cristina Takeyasu, Kunio Ayora, Silvia |
author_facet | Zecchi, Lisa Lo Piano, Ambra Suzuki, Yuki Cañas, Cristina Takeyasu, Kunio Ayora, Silvia |
author_sort | Zecchi, Lisa |
collection | PubMed |
description | Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P (E2) and P (E3) promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P (E2) operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication. |
format | Online Article Text |
id | pubmed-3485210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34852102012-11-01 Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 Zecchi, Lisa Lo Piano, Ambra Suzuki, Yuki Cañas, Cristina Takeyasu, Kunio Ayora, Silvia PLoS One Research Article Recombination-dependent DNA replication, which is a central component of viral replication restart, is poorly understood in Firmicutes bacteriophages. Phage SPP1 initiates unidirectional theta DNA replication from a discrete replication origin (oriL), and when replication progresses, the fork might stall by the binding of the origin binding protein G38P to the late replication origin (oriR). Replication restart is dependent on viral recombination proteins to synthesize a linear head-to-tail concatemer, which is the substrate for viral DNA packaging. To identify new functions involved in this process, uncharacterized genes from phage SPP1 were analyzed. Immediately after infection, SPP1 transcribes a number of genes involved in recombination and replication from P (E2) and P (E3) promoters. Resequencing the region corresponding to the last two hypothetical genes transcribed from the P (E2) operon (genes 44 and 45) showed that they are in fact a single gene, re-annotated here as gene 44, that encodes a single polypeptide, named gene 44 product (G44P, 27.5 kDa). G44P shares a low but significant degree of identity in its C-terminal region with virus-encoded RusA-like resolvases. The data presented here demonstrate that G44P, which is a dimer in solution, binds with high affinity but without sequence specificity to several double-stranded DNA recombination intermediates. G44P preferentially cleaves Holliday junctions, but also, with lower efficiency, replicated D-loops. It also partially complemented the loss of RecU resolvase activity in B. subtilis cells. These in vitro and in vivo data suggest a role for G44P in replication restart during the transition to concatemeric viral replication. Public Library of Science 2012-10-31 /pmc/articles/PMC3485210/ /pubmed/23119018 http://dx.doi.org/10.1371/journal.pone.0048440 Text en © 2012 Zecchi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zecchi, Lisa Lo Piano, Ambra Suzuki, Yuki Cañas, Cristina Takeyasu, Kunio Ayora, Silvia Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title | Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title_full | Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title_fullStr | Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title_full_unstemmed | Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title_short | Characterization of the Holliday Junction Resolving Enzyme Encoded by the Bacillus subtilis Bacteriophage SPP1 |
title_sort | characterization of the holliday junction resolving enzyme encoded by the bacillus subtilis bacteriophage spp1 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485210/ https://www.ncbi.nlm.nih.gov/pubmed/23119018 http://dx.doi.org/10.1371/journal.pone.0048440 |
work_keys_str_mv | AT zecchilisa characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 AT lopianoambra characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 AT suzukiyuki characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 AT canascristina characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 AT takeyasukunio characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 AT ayorasilvia characterizationofthehollidayjunctionresolvingenzymeencodedbythebacillussubtilisbacteriophagespp1 |