Cargando…
Neuroprotective Actions of Methylene Blue and Its Derivatives
Methylene blue (MB), the first lead chemical structure of phenothiazine and other derivatives, is commonly used in diagnostic procedures and as a treatment for methemoglobinemia. We have previously demonstrated that MB could function as an alternative mitochondrial electron transfer carrier, enhance...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485214/ https://www.ncbi.nlm.nih.gov/pubmed/23118969 http://dx.doi.org/10.1371/journal.pone.0048279 |
_version_ | 1782248259404693504 |
---|---|
author | Poteet, Ethan Winters, Ali Yan, Liang-Jun Shufelt, Kyle Green, Kayla N. Simpkins, James W. Wen, Yi Yang, Shao-Hua |
author_facet | Poteet, Ethan Winters, Ali Yan, Liang-Jun Shufelt, Kyle Green, Kayla N. Simpkins, James W. Wen, Yi Yang, Shao-Hua |
author_sort | Poteet, Ethan |
collection | PubMed |
description | Methylene blue (MB), the first lead chemical structure of phenothiazine and other derivatives, is commonly used in diagnostic procedures and as a treatment for methemoglobinemia. We have previously demonstrated that MB could function as an alternative mitochondrial electron transfer carrier, enhance cellular oxygen consumption, and provide protection in vitro and in rodent models of Parkinson’s disease and stroke. In the present study, we investigated the structure-activity relationships of MB in vitro using MB and six structurally related compounds. MB reduces mitochondrial superoxide production via alternative electron transfer that bypasses mitochondrial complexes I-III. MB mitigates reactive free radical production and provides neuroprotection in HT-22 cells against glutamate, IAA and rotenone toxicity. Distinctly, MB provides no protection against direct oxidative stress induced by glucose oxidase. Substitution of a side chain at MB’s 10-nitrogen rendered a 1000-fold reduction of the protective potency against glutamate neurototoxicity. Compounds without side chains at positions 3 and 7, chlorophenothiazine and phenothiazine, have distinct redox potentials compared to MB and are incapable of enhancing mitochondrial electron transfer, while obtaining direct antioxidant actions against glutamate, IAA, and rotenone insults. Chlorophenothiazine exhibited direct antioxidant actions in mitochondria lysate assay compared to MB, which required reduction by NADH and mitochondria. MB increased complex IV expression and activity, while 2-chlorphenothiazine had no effect. Our study indicated that MB could attenuate superoxide production by functioning as an alternative mitochondrial electron transfer carrier and as a regenerable anti-oxidant in mitochondria. |
format | Online Article Text |
id | pubmed-3485214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34852142012-11-01 Neuroprotective Actions of Methylene Blue and Its Derivatives Poteet, Ethan Winters, Ali Yan, Liang-Jun Shufelt, Kyle Green, Kayla N. Simpkins, James W. Wen, Yi Yang, Shao-Hua PLoS One Research Article Methylene blue (MB), the first lead chemical structure of phenothiazine and other derivatives, is commonly used in diagnostic procedures and as a treatment for methemoglobinemia. We have previously demonstrated that MB could function as an alternative mitochondrial electron transfer carrier, enhance cellular oxygen consumption, and provide protection in vitro and in rodent models of Parkinson’s disease and stroke. In the present study, we investigated the structure-activity relationships of MB in vitro using MB and six structurally related compounds. MB reduces mitochondrial superoxide production via alternative electron transfer that bypasses mitochondrial complexes I-III. MB mitigates reactive free radical production and provides neuroprotection in HT-22 cells against glutamate, IAA and rotenone toxicity. Distinctly, MB provides no protection against direct oxidative stress induced by glucose oxidase. Substitution of a side chain at MB’s 10-nitrogen rendered a 1000-fold reduction of the protective potency against glutamate neurototoxicity. Compounds without side chains at positions 3 and 7, chlorophenothiazine and phenothiazine, have distinct redox potentials compared to MB and are incapable of enhancing mitochondrial electron transfer, while obtaining direct antioxidant actions against glutamate, IAA, and rotenone insults. Chlorophenothiazine exhibited direct antioxidant actions in mitochondria lysate assay compared to MB, which required reduction by NADH and mitochondria. MB increased complex IV expression and activity, while 2-chlorphenothiazine had no effect. Our study indicated that MB could attenuate superoxide production by functioning as an alternative mitochondrial electron transfer carrier and as a regenerable anti-oxidant in mitochondria. Public Library of Science 2012-10-31 /pmc/articles/PMC3485214/ /pubmed/23118969 http://dx.doi.org/10.1371/journal.pone.0048279 Text en © 2012 Poteet et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Poteet, Ethan Winters, Ali Yan, Liang-Jun Shufelt, Kyle Green, Kayla N. Simpkins, James W. Wen, Yi Yang, Shao-Hua Neuroprotective Actions of Methylene Blue and Its Derivatives |
title | Neuroprotective Actions of Methylene Blue and Its Derivatives |
title_full | Neuroprotective Actions of Methylene Blue and Its Derivatives |
title_fullStr | Neuroprotective Actions of Methylene Blue and Its Derivatives |
title_full_unstemmed | Neuroprotective Actions of Methylene Blue and Its Derivatives |
title_short | Neuroprotective Actions of Methylene Blue and Its Derivatives |
title_sort | neuroprotective actions of methylene blue and its derivatives |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485214/ https://www.ncbi.nlm.nih.gov/pubmed/23118969 http://dx.doi.org/10.1371/journal.pone.0048279 |
work_keys_str_mv | AT poteetethan neuroprotectiveactionsofmethyleneblueanditsderivatives AT wintersali neuroprotectiveactionsofmethyleneblueanditsderivatives AT yanliangjun neuroprotectiveactionsofmethyleneblueanditsderivatives AT shufeltkyle neuroprotectiveactionsofmethyleneblueanditsderivatives AT greenkaylan neuroprotectiveactionsofmethyleneblueanditsderivatives AT simpkinsjamesw neuroprotectiveactionsofmethyleneblueanditsderivatives AT wenyi neuroprotectiveactionsofmethyleneblueanditsderivatives AT yangshaohua neuroprotectiveactionsofmethyleneblueanditsderivatives |