Cargando…

GFP's Mechanical Intermediate States

Green fluorescent protein (GFP) mutants have become the most widely used fluorescence markers in the life sciences, and although they are becoming increasingly popular as mechanical force or strain probes, there is little direct information on how their fluorescence changes when mechanically stretch...

Descripción completa

Detalles Bibliográficos
Autores principales: Saeger, John, Hytönen, Vesa P., Klotzsch, Enrico, Vogel, Viola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485268/
https://www.ncbi.nlm.nih.gov/pubmed/23118864
http://dx.doi.org/10.1371/journal.pone.0046962
Descripción
Sumario:Green fluorescent protein (GFP) mutants have become the most widely used fluorescence markers in the life sciences, and although they are becoming increasingly popular as mechanical force or strain probes, there is little direct information on how their fluorescence changes when mechanically stretched. Here we derive high-resolution structural models of the mechanical intermediate states of stretched GFP using steered molecular dynamics (SMD) simulations. These structures were used to produce mutants of EGFP and EYFP that mimic GFP's different mechanical intermediates. A spectroscopic analysis revealed that a population of EGFP molecules with a missing N-terminal α-helix was significantly dimmed, while the fluorescence lifetime characteristic of the anionic chromophore state remained unaffected. This suggests a mechanism how N-terminal deletions can switch the protonation state of the chromophore, and how the fluorescence of GFP molecules in response to mechanical disturbance might be turned off.